ImageVerifierCode 换一换
格式:PPT , 页数:17 ,大小:1,009KB ,
资源ID:39771      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-39771.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.3正方形的性质(第1课时)课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

1.3正方形的性质(第1课时)课件

1、1.3 正方形的性质与判定,第一章 特殊平行四边形,第1课时 正方形的性质,导入新课,讲授新课,当堂练习,课堂小结,1.了解正方形的定义及其与平行四边形的关系. 2.探索并证明正方形的性质定理.(重点) 3.应用正方形的性质定理解决相关问题.(难点),学习目标,活动:观察这些图片,你什么发现?正方形四条边有什么关系?四个角呢?,导入新课,活动1:准备一张矩形的纸片,按照下图折叠,然后展开,得到一个四边形.,问题1:折叠后得到的特殊四边形是什么四边形?,正方形,讲授新课,活动2:把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.,问题2:经过变化后得到特殊四边形是什么四边形?,有一组

2、邻边相等,并且有一个角是直角的平行四边形是正方形.,正方形,A,B,C,D,填一填: 角: 边: 对角线: 对称性:,四个角都是直角.,四条边相等.,对角线相等且互相垂直平分.,a,a,a,a,轴对称图形(4条对称轴).,1.正方形的四个角都是直角,四条边相等.2.正方形的对角线相等且互相垂直平分.,已知:如右图,四边形ABCD是正方形. 求证:正方形ABCD四边相等,四个角都是直角.,A,B,C,D,证明:四边形ABCD是正方形.A=90, AB=AC . (正方形的定义)又正方形是平行四边形.正方形是矩形, (矩形的定义)正方形是菱形.(菱形的定义)A=B =C =D = 90,AB= B

3、C=CD=AD.,定理证明,已知:如右图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,ACBD.,A,B,C,D,O,请同学们动手完成以上证明?,提示:可以先通过证明来得到正方形是矩形、菱形,然后利用矩形和菱形的定理来完成该题.,想一想: 正方形是矩形吗?是菱形吗?,矩形,菱形,正方形,平行四边形,正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以平行四边形、矩形、菱形有的性质,正方形都有.,归纳结论,正方形,对角线,边,边,对角线,对角线,角,对边平行且相等,相互平分,相等,四个角相等都是90,相互垂直且 平分对角,四边相等,对称性,轴对称图

4、形(4条对称轴),例1:如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.,典例精析,解:BE=DF,且BEDF.理由如下: (1)四边形ABCD是正方形. BC=DC,BCE =90 . (正方形的四条边都相等,四个角都是直角) DCF=180-BCE=180-90=90.,A,B,D,C,F,E,A,B,D,F,E,BCE=DCF. 又CE=CF. BCEDCF. BE=DF. (2)延长BE交DE于点M, BCEDCF , CBE =CDF. DCF =90 , CDF +F =90.CBE+F=90 , BMF=90

5、. BEDF.,C,M,例2:如图,已知四边形ABCD是正方形,对角线AC与BD相交于点O , MNAB ,且分别于OA , OB相交于点M , N. 求证:(1)BM = CN;(2)BMCN.,证明:(1)MNAB.1 =2 =3 =4 = 45.OM = ON.OA= OB,OA- OM = OB - ON,AM=BN.又2=NBC,AB=BC.ABM BCN(SAS) BM=CN.,1,2,3,4,(2)延长CN交线段MB于点Q. ABMBCN. 6=8. OCB =ABO =45. 5=7. 又ONC=QNB. 180-5 -ONC = 180-7 -QNB, CON =NQB =

6、90. BMCN.,Q,5,7,6,8,1在正方形ABC中,ADB= ,DAC= , BOC= .2.在正方形ABCD中,E是对角线AC上一点,且AE=AB,则EBC的度数是 .,45,90,22.5,第1题,第2题,45,当堂练习,3.如图,已知正方形ABCD ,以AB为边向正方形外作等边ABE,连结DE 、 CE ,求DEC的度数.,D,A,E,B,C,解:ABE是等边三角形.AB =AE=BE,ABE=BEA=EAB =60.又四边形ABCD是正方形.AD=BC=AE=BE,DAB=ABC=90.DAE=CBE=150.AED=EDA=CEB=BCE=15.DEC=AEB-AED-CEB=30.,1.四个角都是直角,2.四条边都相等,3.对角线相等且互相垂直平分,正方形,性质,定义,有一组邻相等,并且有一个角是直角的平行四边形叫做正方形,课堂小结,