ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:499.50KB ,
资源ID:39683      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-39683.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大版八年级数学上册:第四章《一次函数》教案)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北师大版八年级数学上册:第四章《一次函数》教案

1、第四章 一次函数1 函 数1了解函数产生的背景和函数的概念,能判断两个变量间的关系是否属于函数关系2通过对函数概念的探索,初步培养学生利用函数的观点认识现实世界的意识和能力3让学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学知识的理解和有效的学习模式重点掌握函数的概念,会判断两个变量之间的关系是否属于函数关系难点能把实际问题抽象概括为函数问题一、情境导入课件出示教材第 75 页图 41 及相关问题,并由学生讨论完成题目师:在现实生活中一个量随另一个量的变化而变化的现象大量存在函数就是研究一些量之间确定性依赖关系的数学模型(板书课题)二、探究新知函数的相关概念(1)课件出

2、示教材第 76 页“做一做”第 1 题师:层数 n 和物体总数 y 之间是什么关系?引导学生得出:只要给定层数,就能求出物体总数(2)课件出示教材第 76 页“做一做”第 2 题师:在关系式 Tt273 中,两个变量中若知道其中一个,是否可以确定另外一个?一般地,如果在一个变化过程中有两个变量 x 和 y,并且对于变量 x 的每一个值,变量 y 都有唯一的值与它对应,那么我们称 y 是 x 的函数,其中 x 是自变量表示函数的方法一般有:列表法、关系式法和图象法对于自变量在可取值范围内的一个确定的值 a,函数有唯一确定的对应值,这个对应值称为当自变量等于 a 时的函数值理解函数概念时应注意:(

3、1)在某一变化过程中有两个变量 x 与 y.(2)这两个变量互相联系,当变量 x 取一个确定的值时,变量 y 的值就随之确定(3)对于变量 x 的每一个值,变量 y 都有唯一的一个值与它对应 ,如在关系式y2x(x0)中,当 x9 时,y 对应的值为 3 或3,不唯一 ,则 y 不是 x 的函数师:上述问题中,自变量能取哪些值?指出要根据实际问题确定自变量的取值范围三、练习巩固教材第 77 页“随堂练习” 四、小结函数的概念包含以下三方面:(1)两个变量;(2)两个变量之间唯一确定的对应关系;(3)当一个变量取一个确定的值时,另一个变量有唯一的值与它对应五、课外作业教材第 7778 页习题 4

4、.1 第 14 题本节课是函数学习的起始课,因此理解函数的基本思想和表达方式是本节课的重点通过生活实例中对变量的提取,帮助学生比较深刻地领悟了函数的意义教材安排的实际问题 ,旨在让学生通过直观感知,领悟相关概念,这些问题不宜单纯作为教师讲解的例题, 要注意引导学生观察其中数量之间的相互关系、鼓励学生发表意见,可以根据学生交流的情况 , 鼓励学生举出自己熟悉的实例,穿插在几个问题的讨论之中.2 一次函数与正比例函数1理解一次函数和正比例函数的概念,以及两者之间的关系2能够根据所给条件写出简单的一次函数表达式,并利用它解决实际问题3经历利用一次函数解决实际问题的过程,发展学生的数学应用能力重点一次

5、函数、正比例函数的概念会根据已知信息写出一次函数的表达式难点一次函数知识的运用一、情境导入师:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如弹簧的长度(在弹性限度内)与所挂物体的质量,输液时间与相应时间内水滴数目 了解这些关系,可以帮助我们更好地认识世界函数是刻画变量之间关系的常用模型,其中最为简单的是一次函数,那么什么是一次函数?用一次函数可以解决哪些问题呢?你想了解这些吗?一起进入这节课的学习吧!二、探究新知一次函数的相关概念(1)课件出示教材第 79 页“做一做”上面的题目分析:当不挂物体时,弹簧长度为 3 cm,当挂 1 kg 物体时,增加 0.5 cm,总长度为3.5

6、cm,增加 1 kg 物体,即所挂物体为 2 kg 时,弹簧又增加 0.5 cm,总共增加 1 cm,由此可见,所挂物体为 x kg 时, 弹簧就伸长 0.5x cm,则弹簧总长为原长加伸长的长度,即y30.5x.(2)课件出示教材第 79 页“做一做” 解:如下表所示:汽车行驶路程 x/km 0 50 100 150 200 300耗油量 y/L 0 6 12 18 24 36y6x.z60x.若两个变量 x,y 间的对应关系可以表示成 ykxb(k,b 为常数,k0) 的形式,则称 y 是 x 的一次函数例如 y2x1, yx1 等都是一次函数特别地,当 b0 时,称 y 是 x 的正比例

7、函数例如,y2x,y3x 等都是正比例函数正比例函数是一次函数的特例,一次函数包含正比例函数正比例函数与一次函数的关系如图所示三、举例分析1课件出示教材第 79 页例 1.由学生交流讨论完成师:两个变量之间存在函数关系,它们之间一定是一次函数或正比例函数关系吗?2课件出示教材第 80 页例 2.此题对于现阶段的学生有一定难度,由教师讲解分析:一次函数 ykxb(k, b 为常数,k0) 中,自变量的取值范围是全体实数 ,但是在实际问题中,要根据具体情况来确定该一次函数的自变量的取值范围本例题的关键是确定问题当中的 x 的取值范围四、练习巩固教材第 8081 页“随堂练习”第 12 题五、小结正

8、 比 例 函 数 定 义 形 如 y kx(k 0)的 函 数一 次 函 数 定 义 形 如 y kx b(k, b是 常 数 , k 0)的 函 数六、课外作业教材第 82 页习题 4.2 第 14 题教学时从学生熟悉的实际问题入手,旨在让学生直观感知领悟相关概念,通过学生的合作交流得到一次函数和正比例函数的定义,引导学生把新学习的函数知识与实际问题联系起来在教学过程中要适当增加习题,设计不同层次的习题,让不同层次的学生得到不同程度的练习,以提高学生的解题能力和对一次函数与正比例函数的理解和掌握3 一次函数的图象1理解函数图象的概念,经历作图过程,初步了解作函数图象的一般步骤理解一次函数的关

9、系式与图象之间的对应关系,并熟练作出一次函数的图象2了解正比例函数 ykx 的图象的特点,会作正比例函数图象,理解一次函数及其图象的有关性质;进一步培养学生数形结合的意识和能力重点能熟练地作出一次函数的图象,归纳作函数图象的一般步骤难点理解一次函数的关系式与图象之间的对应系一、情境导入课件出示题目:已知 A,B 两人在一次百米赛跑中,路程 s(m)与赛跑时间 t(s)的关系如图所示,你知道 A,B 两人所跑的路程 s(m)与时间 t(s)之间属于哪种函数关系吗?师:通过这节课的学习,同学们一定会有所了解. (板书课题)二、探究新知把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐

10、标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象一次函数 ykxb 的图象是怎样的呢?我们先研究较为简单的正比例函数的图象1正比例函数的图象某地 1 千瓦时电费为 0.8 元,表示电费 y(元) 与所用电量 x(千瓦时)之间的函数关系式是_,你能画出这个函数的图象吗? 解:(1)确定自变量的取值范围根据题意可知 y0.8x,这是个实际问题,自变量的取值要使实际问题有意义,所以x0.(2)列表取自变量 x 的一些值,算出相应的函数值,列成表格如下:师:x 0 1 2 3 4 5 y 0 0.8 1.6 2.4 3.2 4 (3)描点建立平面直角坐标系,以 x 的取值为横坐标,

11、相应的函数值为纵坐标,描出点O,A,B ,C , D,E,如图所示(4)连线观察描出的这几个点,它们的位置关系是怎样的?学生观察这些点会得出这些点在一条直线上,由于自变量的取值范围是 x0,因此我们猜想这个函数的图象是以原点为端点的一条射线,数学上已经证明这个猜想是正确的,于是这个函数的图象如下图所示注意:因为两点可以确定一条直线,因此,画正比例函数的图象时只需过原点(0,0)和点(1, k)画一条直线即可2正比例函数的性质学生画出图象后,引导学生分析:正比例函数 ykx(k0) 的图象是一条经过原点(0,0)的直线, 我们称它为直线 ykx.当 k0 时,经过第一、三象限 ,从左往右升,即

12、y的值随 x 值增大而增大;当 k0 时 ,y 的值随着 x 值的增大而增大;当 k0 时,把直线 ykx 向上平移 b 个单位长度,可得直线 ykxb;当 b0图象图象特征 过点(0,0)和(1,k)的直线变化规律 y 随 x 的增大而减小 y 随 x 的增大而增大3.一次函数 ykxb 的图象经过点(0,b) ,当 k0 时,y 的值随着 x 值的增大而增大;当 k0 时,y 的值随着 x 值的增大而减小五、课外作业1教材第 85 页习题 4.3 第 14 题2教材第 8788 页习题 4.4 第 15 题本节课利用数形结合的思想引入新课,通过学生的自主探索与合作交流得到正比例函数的图象和

13、性质,使学生易于接受新知识通过例题的讲解,加深了学生对正比例函数的图象和性质的理解,提高了学生应用正比例函数的图象和性质解题的能力一次函数的图象和性质是在正比例函数的基础上进行学习的,研究一次函数的图象和性质,除了借助图象本身去分析外,还应该注重引导学生思考 k 值对函数的图象和性质的影响,只有深刻领会 k 值的影响 ,才能从更深层次理解一次函数的图象及性质.4 一次函数的应用第 1 课时 一次函数的表达式1了解两个条件确定一个一次函数,一个条件确定一个正比例函数2能由两个条件求出一次函数的表达式,由一个条件求出正比例函数的表达式,并解决有关实际问题重点根据所给信息确定一次函数的表达式难点用一

14、次函数的关系式解决有关实际问题一、情境导入课件出示:小红同学受乌鸦喝水故事的启发,利用量筒和体积相同的小球进行了如下操作师:你能根据以上信息求出放入小球后量筒中水面的高度与小球个数之间的关系吗?学了本节内容后,你就能轻松解决了二、探究新知1一次函数的表达式课件出示题目:某物体沿一个斜坡下滑,它的速度 v (m/s)与其下滑时间 t (s)的关系如图所示. (1)写出 v 与 t 之间的关系式;(2)下滑 3 s 时物体的速度是多少?分析:要求 v 与 t 之间的关系式 ,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设出函数关系式,再把已知的坐标代入关系式,求出待定系数即可

15、2确定表达式所需的条件课件出示教材第 89 页“想一想” 学生讨论得出:确定一次函数的表达式需要两个条件,确定正比例函数的表达式只需要一个条件说明:一次函数的表达式 ykxb 有两个常数 k,b,要求出 k 和 b 的值需要两个条件,而正比例函数中 b0,只需求 k,所以只需一个条件因为一次函数的图象是一条直线,两点确定一条直线所以需要两个条件,而正比例函数的图象是经过原点的一条直线所以只需要一点就可以确定这条直线三、举例分析课件出示教材第 89 页例 1.分析:因为一次函数的图象是一条直线,两点确定一条直线,所以需要两个条件,而正比例函数的图象是经过原点的一条直线,所以只需要确定另外一点坐标

16、就可以确定这条直线的关系式拓展:利用待定系数法确定一次函数的关系式,其步骤为:一设:根据题意,先设出函数关系式为 ykxb(k0);二代:确定两对对应值或图象上两个点的坐标 ,分别代入函数关系式,得到关于 k,b 的两个方程;三解:求出 k,b 的值(暂时可以通过等量代换的方式去求两个未知数);四定:最后确定函数关系式四、练习巩固1教材第 8990 页“随堂练习”13 题2补充练习:(1)一根蜡烛长 20 cm,点燃后每小时燃烧 5 cm,燃烧后剩下的长度 y cm 与燃烧时间 x h 的函数关系用图象表示为下图中的( )(2)一次函数 ykxb 的图象如图所示,那么 k,b 的值分别是 (

17、)Ak1,b1Bk2,b1Ck1,b1Dk2 ,b1(3)一个正比例函数的图象经过点(2 ,3),则其表达式是( )Ayx By x32Cy2x Dy3x(4)已知直线 l 经过点(0 ,3)和点 (3,0),求直线 l 的函数表达式五、小结确定一次函数表达式的方法:由问题的实际意义直接确定出函数表达式的一般形式:若为正比例函数,则设其表达式为 ykx(k0) ,代入一个除原点以外的点的坐标 ,求出 k的值,即可确定函数表达式;若为一般的一次函数,则设其表达式为 ykxb(k0) ,代入两个点的坐标,求出 k,b 的值,从而确定一次函数的表达式六、课外作业教材第 90 页习题 4.5 第 14

18、 题确定函数表达式看似简单,但学生在刚刚接触到这个问题的时候往往无从下手本节课正是基于这点认识,借助引例,首先从方法上指导学生确定函数表达式,即从判断类型、确定 k 值( 或 k 和 b 的值)两个方面确定函数表达式由于学生此时尚没有学到二元一次方程组,对于确定一次函数表达式存在一定的困难,教师可以建议学生用“代换”的方式,转化为一元一次方程,以此求出一次函数表达式当中的两个未知数,进而确定一次函数的表达式第 2 课时 单一一次函数图象的应用1能通过单一一次函数图象获取信息,进一步训练学生的识图能力2能利用单一一次函数图象解决简单的实际问题,进一步发展学生的数学应用能力重点单一一次函数图象的应

19、用难点从函数图象中正确读取信息一、复习导入师:在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用二、探究新知1单一一次函数图象的应用(1)课件出示教材第 91 页图 47 和题目分析:原蓄水量就是图象与纵轴交点的纵坐标求干旱持续 10 天时的蓄水量,也就是求 t 等于 10 时所对应的 V 的值当 t10 时,V 约为 1 000 万 m3.同理可知当 t 为 23 时,V 约为 750 万 m3.当蓄水量小于 400 万 m3 时 ,即 V 小于 400 万 m3,所对

20、应的 t 值约为 40 天水库干涸也就是 V 为 0,函数图象与横轴交点的横坐标即为所求当 V 为 0 时,所对应的 t 的值约为 60 天(2)课件出示教材第 91 页例 2.分析:函数图象与 x 轴交点的横坐标即为摩托车行驶的最长路程,与 y 轴交点的纵坐标即为最多储油量x 从 0 增加到 100 时,y 从 10 开始减少,减少的数量即为行驶100 km 消耗的油量当 y1 时,摩托车将自动报警2一次函数与一元一次方程(1)课件出示教材第 92 页“做一做” 学生独立完成(2)课件出示教材第 92 页“议一议” 可以从“数”和“形”的方面引导学生讨论生:函数 y0.5x1 与 x 轴交点

21、的横坐标即为方程 0.5x10 的解总结:一般地,当一次函数 ykxb 的函数值为 0 时,相应的自变量的值就是方程kxb0 的解从图象上看,一次函数 ykxb 的图象与 x 轴交点的横坐标就是方程kxb0 的解三、练习巩固教材第 92 页习题 4.6 第 1 题四、小结一次函数图象的应用:(1)准确读图,找到图象与 x 轴、y 轴的交点,根据这些关键点解题(2)在实际问题中,注意自变量的取值范围,在画图和读图时也要注意五、课外作业教材第 93 页习题 4.6 第 23 题函数和我们的生活密切相关,函数图象可以直观地反映一些规律,对函数图象的理解,其关键是弄清函数图象上的点的意义,即横坐标与纵

22、坐标的意义,渗透数形结合的数学思想本节课采取学生通过小组合作交流获取信息,应用所学的知识解决有关一次函数的问题的方式进行教学时还可以根据学生的实际情况,结合函数图象提出相应的实际问题第 3 课时 两个一次函数图象在同一坐标系中的应用1通过观察函数图象,能够从两个一次函数图象中获取信息,理解函数图象交点的实际意义2通过函数图象,解决实际问题重点利用图象解决实际问题难点从函数图象中提炼出有用的信息一、情境导入课件出示题目:学校每月的复印任务原来由甲复印社承接,按每 100 页 40 元计费现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每 100 页 15 元收费两复印社每月收费情况如图所

23、示. 根据图象回答:(1)乙复印社每月的承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在 1 200 页左右,那么应选择哪个复印社?师:我们能不能运用一次函数解决一些比较复杂的问题呢?二、探究新知两个一次函数图象在同一坐标系中的应用(1)课件出示教材第 93 页图 410 和题目师:横轴和纵轴分别表示的实际意义是什么?生:横轴表示销售量,纵轴表示销售收入和销售成本师:l 1 对应的一次函数 yk 1xb 1 中,k 1 和 b1 的实际意义各是什么?l 2 对应的一次函数 yk 2xb 2 中,k 2 和 b2 的实际意义各是什么?学生小组讨论,根据图象加

24、以说明:l 1 对应的函数关系式是 y1 000x,1 000 表示每销售 1 t,销售收入是 1 000 元,这里的“b0” ,说明该产品没销售时无收入; l2 对应的函数关系式是 y500x2 000, 这里 500 表示的是销售量每增加 1 t,销售成本增加 500 元,没销售时成本是 2 000 元(2)课件出示教材第 94 页例 3.独立尝试,并在小组内交流自己的结论师:对学生的结果进行全班讲评,并让学生思考:通过刚才的观察,你有哪些认识?各抒己见,互相补充师:观察图象解答问题时要明确坐标轴所表示的含义,要注意两直线的交点的意义,在横轴上的一定取值范围内,位于上方图象的函数值要比位于

25、下方图象的函数值大分析:本例题主要通过对函数图象的分析解决问题,首先要准确判断 l1 和 l2 哪个代表A,哪个代表 B.从 A 和 B 的速度角度看,l 1 较陡,l 2 较平 ,这说明 l1 的速度快如果 l1 和l2 有交点,交点的坐标就能反映出追赶上的时间和距离海岸的距离根据图中的坐标,可以求出两条直线的表达式,通过表达式就能正确解决问题三、练习巩固1如图所示,OA,BA 分别表示甲、乙两名学生运动的一次函数图象,图中 s 和 t 分别表示运动路程和时间,根据图象快者的速度比慢者的速度每秒快( )A2.5 m B2 m C 1.5 m D1 m2小明骑自行车从 A 地去 B 地,一段时

26、间后小刚骑摩托车也从 A 地出发追赶小明,两人走的路程 s(km)与小明骑行时间 t(h)的关系如图所示(1)_表示小明行驶的路程与时间的关系( 填“l 1”或“l 2”); (2)小刚比小明晚出发_小时; (3)v 小刚 _,v 小明 _; (4)小刚出发_小时后追上小明. 五、小结利用函数图象解决问题注意三个点:与 x 轴交点、与 y 轴交点、两直线的交点六、课外作业教材第 9596 页习题 4.7 第 13 题本节课的教学重点是借助一个坐标系中两个函数图象去分析问题,难点是只根据函数图象而不是通过计算去解决问题学生习惯于通过计算去解决问题,通过函数图象去解决问题的机会比较少本节课正是基于上述原因,在教学的过程中围绕教材中设立的问题,给学生扩充了问题或者提示,较好地解决了学习过程中的难点问题