1、第 27章相似单元检测一 选择题12017重庆若 ABC DEF,且相似比为 32,则 ABC 与 DEF 的对应高的比为( A )A32 B35C94 D492下列说法中,正确的是( A)对应角相等的两个多边形相似;对应边成比例的两个多边形相似;若两个多边形不相似,则对应角不相等;若两个多边形不相似,则对应边不成比例;边长分别为3,5 的两个正方形是相似多边形;全等多边形一定是相似多边形A. B. C. D. 3在 ABC 和 A1B1C1中, A A190,添加下列条件不能判定两个三角形相似的是( D )A B B1 B. ABA1B1 ACA1C1C. D. ABA1B1 BCB1C1
2、ABB1C1 ACA1C142018滨州在平面直角坐标系中,线段 AB 两个端点的坐标分别为 A(6,8),B(10,2)若以原点 O 为位似中心,在第一象限内将线段 AB 缩短为原来的 后得到线段12CD,则点 A 的对应点 C 的坐标为( C )A(5,1) B(4,3) C(3,4) D(1,5)5在图 K62(b)中,由图 K62(a)放大或缩小而得到的图形有( B )图 K62A0 个 B1 个 C2 个 D3 个6如图 K142,已知 BC ED,下列说法不正确的是( D )图 K142A ABC 与 ADE 是位似图形B点 A 是 ABC 与 ADE 的位似中心C B 与 D,
3、C 与 E 是对应点D AE AD 是相似比7如图 K133,以点 O 为支点的杠杆,在 A 端用竖直向上的拉力将重为 G 的物体匀速拉起,当杠杆 OA 水平时,拉力为 F;当杠杆被拉至 OA1时,拉力为 F1,过点 B1作B1C OA,过点 A1作 A1D OA,垂足分别为 C, D. OB1C OA1D; OAOC OBOD; OCG ODF1; F F1.上述 4 个结论中,正确的有( D )图 K133A1 个 B2 个 C3 个 D4 个8如图 K151,在平面直角坐标系中,有两点 A(4,2),B(3,0),以原点 O 为位似中心,AB与 AB 的相似比为 ,得到线段 AB,正确的
4、画法是( D )12A BC D图 K1519下列四条线段中,不能成比例的是(C )A a3, b6, c2, d4B a1, b , c , d2 6 3C a4, b6, c5, d10D a2, b , c , d2 5 15 310将平面直角坐标系中某个图案各点的坐标作如下变化,其中属于位似变换的是( C )A将各点的纵坐标乘 2,横坐标不变B将各点的横坐标除以 2,纵坐标不变C将各点的横坐标、纵坐标都乘 2D将各点的纵坐标减去 2,横坐标加上 2112017常州如图 K106,已知矩形 ABCD 的顶点 A, D 分别落在 x 轴、 y 轴上,OD2 OA6, AD AB31,则点
5、C 的坐标是( A )图 K106A(2,7) B(3,7) C(3,8) D(4,8)12观察图 K61 中各组图形,其中相似的图形有( B )图 K61A3 组 B4 组 C5 组 D6 组二、填空题13如图 K118,Rt AOB 的一条直角边 OB 在 x 轴上,双曲线 y (x0)经过斜边kxOA 的中点 C,与另一条直角边交于点 D.若 S OCD9,则 S OBD 的值为_图 K118答案 6解析 如图,过点 C 作 CEx 轴,垂足为 E.在 RtOAB 中,OBA90,CEAB.C 为 RtAOB 的斜边 OA 的中点,CE 为 RtAOB 的中位线,且 SOCD S ACD
6、 ,OECOBA,且 .OCOA 12双曲线所对应的函数解析式是 y ,kxS OBD S COE k,S AOB 4S COE 2k.12由 SAOB S OBD S OAD 2S OCD 18,得 2k k18,解得 k12,12S OBD k6.12故答案为 6.14放大镜下的图形和原来的图形_相似图形;哈哈镜中的图形和原来的图形_相似图形(填“是”或“不是”)答案 是 不是解析 放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不是相似图形152017兰州如图 K146,四边形 ABCD 与四边形 EFGH 位似,位似
7、中心是点 O, ,则 _OEOA 35 FGBC图 K146答案 35解析 四边形 ABCD 与四边形 EFGH 位似,OEFOAB,OFGOBC, , .OFOB OEOA 35 FGBC OFOB 3516如图 K95, D 是 ABC 内的一点,连接 BD 并延长到点 E,连接 AD, AE,若 ,且 CAE29,则 BAD_.ADAB DEBC AEAC图 K95答案 29解析 ,ADAB DEBC AEACADEABC,DAEBAC,即BADDACDACCAE,BADCAE29.三、解答题17如图 K128 是一个常见铁夹的侧面示意图, OA, OB 表示铁夹的两个面, C 是轴,C
8、D OA 于点 D,已知 DA15 mm, DO24 mm, DC10 mm,我们知道铁夹的侧面是轴对称图形,请求出 A, B 两点间的距离图 K128解:如图,连接 AB,同时连接 OC 并延长交 AB 于点 E,铁夹的侧面是轴对称图形,故 OE 是对称轴,OEAB,AEBE.CODAOE,CDOAEO90,RtOCDRtOAE, ,OCOA CDAE而 OC 26,OD2 DC2 242 102 ,AE 15,2624 15 10AE 391026AB2AE30(mm)答:A,B 两点间的距离为 30 mm.18如图 K73,把矩形 ABCD 对折,折痕为 MN,矩形 DMNC 与矩形 A
9、BCD 相似,已知AB4.(1)求 AD 的长;(2)求矩形 DMNC 与矩形 ABCD 的相似比. 链 接 听 课 例 4归 纳 总 结图 K73解:(1)设矩形 ABCD 的长 ADx,则 DM AD x.12 12矩形 DMNC 与矩形 ABCD 相似, ,即 ,ADAB CDDM x4 412xx4 或 x4 (舍去)2 2即 AD 的长为 4 .2(2)矩形 DMNC 与矩形 ABCD 的相似比为 44 1 (或 2)2 2 219如图 K1411,矩形 ABCD 与矩形 AB C D是位似图形,点 A 为位似中心,已知矩形 ABCD 的周长为 24, BB4, DD2,求 AB,
10、AD 的长图 K1411解:矩形 ABCD 的周长为 24,ABAD12.设 ABx,则 AD12x,ABx4,AD14x.矩形 ABCD 与矩形 ABCD是位似图形, ,ABAB ADAD即 ,xx 4 12 x14 x解得 x8,AB8,AD1284.202017杭州如图 K1010,在锐角三角形 ABC 中,点 D, E 分别在边 AC, AB 上,AG BC 于点 G, AF DE 于点 F, EAF GAC.(1)求证: ADE ABC;(2)若 AD3, AB5,求 的值AFAG图 K1010解:(1)证明:AFDE 于点 F,AGBC 于点 G,AFE90,AGC90,AEF90
11、EAF,C90GAC.又EAFGAC,AEFC.又DAEBAC,ADEABC.(2)ADEABC,ADEB.又AFDAGB90,AFDAGB, .AFAG ADABAD3,AB5, .AFAG 35212017凉山州如图 K158,在边长为 1 的正方形网格中建立平面直角坐标系,已知ABC 的三个顶点分别为 A(1,2),B(2,1),C(4,5)(1)画出ABC 关于 y 轴对称的A 1B1C1;(2)以原点 O 为位似中心,在 x 轴的上方画出A 2B2C2,使A 2B2C2与ABC 位似,且相似比为 2,并求出A 2B2C2的面积图 K158解:(1)如图所示,A 1B1C1就是所要求的三角形(2)如图所示,A 2B2C2就是所要求的三角形如图,分别过点 A2,C 2作 y 轴的平行线,过点 B2作 x 轴的平行线,交点分别为E,F,A(1,2),B(2,1),C(4,5),A 2B2C2与ABC 位似,且相似比为 2,A 2(2,4),B 2(4,2),C 2(8,10),A 2E2,C 2F8,EF10,B 2E6,B 2F4,SA 2B2C2 (28)10 26 4828.12 12 12