ImageVerifierCode 换一换
格式:PPTX , 页数:30 ,大小:1.79MB ,
资源ID:34467    下载:注册后免费下载
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-34467.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年山东省德州市中考数学题型专题复习课件:题型6)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019年山东省德州市中考数学题型专题复习课件:题型6

1、题型6 二次函数综合题,类型二次函数中的最值问题,例12015德州,T24,12分已知抛物线ymx24x2m与x轴交于点A(,0),B(,0),且 2. (1)求抛物线的解析式; (2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由; (3)若点P在抛物线上,点Q在x轴上,当以点D,E,P,Q为顶点的四边形是平行四边形时,求点P的坐标,规范解答:(1)由题意,可得,是方程mx24x2m0的两根, 由根与系数的关系,可得 ,2. 2

2、,(1分) 2,即 2, 解得m1. .(2分) 故抛物线的解析式为yx24x2(3分),(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,理由:yx24x2(x2)26, 抛物线的对称轴l为x2,顶点D的坐标为(2,6)(4分) 又抛物线与y轴交点C的坐标为(0,2),点E与点C关于l对称, 点E的坐标为(4,2) 作点D关于y轴的对称点D,点E关于x轴的对称点E,(5分) 则点D的坐标为(2,6),点E的坐标为(4,2),连接DE,交x轴于点M,交y轴于点N, 此时,四边形DNME的周长最小为DEDE,如图1所示 (6分),延长EE,DD交于一点F, 在RtDEF中,DF

3、6,EF8, 则DE 10.(7分) 连接CE,交对称轴l于点G. 在RtDGE中,DG4,EG2, DE 2. 四边形DNME的周长最小值为10 .(8分),(3)如图2,P为抛物线上的点,过点P作PHx轴,垂足为H.,若以点D,E,P,Q为顶点的四边形为平行四边形, 则PHQDGE, PHDG4.(9分) |y|4. 当y4时,x24x24, 解得x12 ,x22 ;(10分) 当y4时,x24x24, 解得x32 ,x42 . 无法得出以DE为对角线的平行四边形, 故点P的坐标为(2 ,4)或(2 ,4)或 (2 ,4)或(2 ,4)(12分),满分技法以二次函数图象为背景探究动点形式的

4、最值问题,要注意以下几点:1.要确定所求三角形或四边形面积最值,可设动点运动的时间t或动点的坐标;2.(1)求三角形面积最值时要用含t的代数式表示出三角形的底和高的代数式或函数表达式;(2)求四边形面积最值时,常用到的方法是利用割补法将四边形分成两个三角形,从而利用三角形的方法求得用含t的代数式表示的线段,然后用含t的代数式表示出图形面积;3.用二次函数的性质来求最大值或最小值,【满分必练】,12018淄博如图,抛物线 yax2bx 经过OAB的三个顶点,其中A(1, ),B(3, ),O为坐标原点 (1)求这条抛物线所对应的函数表达式;,解:把点A(1, ),点B(3, )分别代入yax2b

5、x,得解得 这条抛物线所对应的函数表达式为 y .,(2)若点P(4,m),Q(t,n)为该抛物线上的两点,且nm,求t的取值范围;,(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求BOC的大小及点C的坐标,解:由(1)得,抛物线开口向下,对称轴为直线x , 当x 时,y随x的增大而减小, 当t4时,nm. 由抛物线的对称性可知,当t 时,nm. 综上所述,t的取值范围为t4或t .,解:如图,设抛物线交x轴于点F,分别过点A, B作ADOC于点D,BEOC于点E. ACAD,BCBE ADBEACBCAB. 当OCAB时,点A,点B到直线OC的距离之 和最大,点A

6、(1, ),点B(3, ), AOF60,BOF30,易求直线AB的函数表达式为y x2 . 设直线AB与x轴交于点G,则点G(2,0) OG2. OA2,AOG是等边三角形 OAB60,ABO30. 当OCAB时,BOC60. FOC30. 设C(c, c2 ), 则tanFOC , 解得c . 点C的坐标为( , ),22018常德如图,已知二次函数的图象过点O(0,0)A(8,4),与x轴交于另一点B,且对称轴是直线x3. (1)求该二次函数的解析式;,(2)若M是OB上的一点,作MNAB交OA于点N,当ANM面积最大时,求点M的坐标;,解:抛物线过原点,对称轴是直线x3, B点坐标为(

7、6,0) 设二次函数解析式为yax(x6), 把A(8,4)代入,得a824, 解得a , 二次函数的解析式为y x(x6), 即y x2 x.,解:设点M的坐标为(t,0), 易得直线OA的解析式为y x, 设直线AB的解析式为ykxb,,把B(6,0),A(8,4)代入,得 解得 直线AB的解析式为y2x12. MNAB,设直线MN的解析式为y2xn, 把M(t,0)代入,得2tn0,解得n2t, 直线MN的解析式为y2x2t. 解方程组 得 点N的坐标为( , ). SAMNSAOMSNOM 当t3时,SAMN有最大值3,此时点M的坐标为(3,0),(3)P是x轴上的点,过点P作PQx轴

8、与抛物线交于点Q.过点A作ACx轴于点C,当以点O,P,Q为顶点的三角形与以点O,A,C为顶点的三角形相似时,求P点的坐标,解:设点Q的坐标为(m, m2 m) OPQACO, 当PQOCOA时, ,即 . PQ2PO,即| m2 m|2|m|. 解方程 m2 m2m,得m10(舍去),m214,此时点P的坐标为(14,0) 解方程 m2 m2m,得m10(舍去),m22,此时点P的坐标为(2,0) 当PQOCAO时, ,即 . PQ PO,即| m2 m| |m|. 解方程 m2 m m,得m10(舍去),m28(舍去), 解方程 m2 m m,得m10(舍去),m24, 此时点P的坐标为(

9、4,0) 综上所述,点P的坐标为(14,0)或(2,0)或(4,0),32018定西如图,已知二次函数yax22xc的图象经过点C(0,3),与x轴分别交于点A,点B(3,0)点P是直线BC上方的抛物线上一动点 (1)求二次函数yax22xc的解析式;,(2)连接PO,PC,并把POC沿y轴翻折,得到四边形POPC.若四边形POPC为菱形,请求出此时点P的坐标;,(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时点P的坐标和四边形ACPB的最大面积,类型二次函数中的存在性问题,例22014德州,T24,T12分如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OAOC4O

10、B,动点P在过A,B,C三点的抛物线上,(1)求抛物线的解析式; (2)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由; (3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标,满分技法(1)解答二次函数中存在性问题的一般思路:先对结论作出肯定的假设,然后由肯定假设出发,结合已知条件进行正确的计算、推理,若推出矛盾,则否定先前假设,若推出合理的结论,则说明假设正确,由此得出问题的结论;(2)对于点的存在性问题,首先要根据条件,运用画图判断存在的可能性,

11、作出合理的猜想然后再通过方法的选择,在演绎的过程或结论中,作出存在与否的判断;(3)对于单个图形形状的存在性判断,先假设图形形状存在,然后根据图形的特殊性来求出存在的条件(即要求的点的坐标)当图形的形状无法确定唯一时,还要注意分类,如等腰三角形的腰与底,直角三角形中直角顶点的位置等,【满分必练】,42018临沂 如图,在平面直角坐标系中,ACB90,OC2OB,tanABC2,点B的 坐标为(1,0),抛物线yx2bxc经过A,B两点 (1)求抛物线的解析式;,自主解答:在RtABC中,由点B的坐标可知OB1. OC2OB, OC2,则BC3. 又tanABC2, AC2BC6,则点A的坐标为

12、(2,6),(2)点P是直线AB上方抛物线上的一点过点P作PD垂直x轴于点D,交线段AB于点E,使PE DE. 求点P的坐标;,在直线PD上是否存在点M,使ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在请说明理由,52018岳阳已知抛物线F:yx2bxc经过坐标原点O,且与x轴另一交点为( ,0) (1)求抛物线F的解析式;,(2)如图1,直线l:y xm(m0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2y1的值(用含m的式子表示);,(3)在(2)中,若m ,设点A是点A关于原点O的对称点,如图2. 判断AAB的形状,并说明理由;,平面内是否存在点P,使得以点A,B,A,P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由,检测学习成果,体验成功快乐!请用高分提升训练第225227页。祝你取得好成绩!,