1、数学试卷 第 1 页共 9 页A 21l baCB江阴山观中考模拟测试数学试卷 2018.4注意事项:1答卷前,考生务必用 0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合2答选择题必须用 2B 铅笔将答题卡上对应题目中的选项标号涂黑如需改动,请用橡皮擦干净后,再选涂其他答案答非选择题必须用 0.5 毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效3作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚4卷中除要求近似计算的结果取近似值外,其他均应给出精确结果一、选择题(本大题共 1
2、0 小题,每小题 3 分,共 30 分在每小题所给出的四个选项中,只有一项是正确的,请用 2B 铅笔把答题卡上相应的选项标号涂黑)15 的相反数是 ( )A B5 C5 D 512函数 y 中自变量 x 的取值范围是 ( ) 24Ax2 Bx 2 Cx2 D x23化简 的结果是 ( )1Ax1 BCx1 Dx1x4左下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是 ( )5.如图,直线 ab,直线 l与 a,b 分别交于 A,B 两点,过点 B 作 BCAB 交直线 a 于点 C,若165,则 2 的度数为 ( )A115 B65 C35 D25(第 4 题)(第 5 题)正面A
3、. B. C. D.数学试卷 第 2 页共 9 页6. 小红随机调查了 50 名九年级同学某次知识问卷的得分情况,结果如下表:问卷得分(单位:分) 65 70 75 80 85人数(单位:人) 1 15 15 16 3则这 50 名同学问卷得分的众数和中位数分别是 ( )A16,75 B80,75 C75,80 D16,157若点 A(3, 4)、B(2,m )在同一个反比例函数的图像上,则 m 的值为 ( )A6 B6 C12 D128某条公共汽车线路收支差额 y与乘客量 x的函数关系如图所示(收支差额 车票收入 支出费用) ,由于目前本条线路亏损,公司有关人员提出了两条建议:建议() 不改
4、变支出费用,提高车票价格;建议()不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则 ( )A 反映了建议() ,反映了建议() B反映了建议(),反映了建议()C. 反映了建议() ,反映了建议() D反映了建议() ,反映了建议()9. 完全相同的 6 个小矩形如图所示放置,形成了一个长、宽分别为 n、m 的大矩形,则图中阴影部分的周长是 ( )A 6(mn) B 3(mn) C 4n D 4m10.如图,在边长为 6 的正方形 ABCD 中,点 E、F、G 分别在边 AB、AD 、CD 上,EG 与 BF 交于点 I,AE2,BFEG,DG
5、AE,则 DI 的最小值等于( )A 3 B2 2 C2 D2 35 13 1065 2二、填空题(本大题共 8 小题,每小题 2 分,共 16 分不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)mn(第 9 题) (第 10 题) GA FB CDEI数学试卷 第 3 页共 9 页11分解因式:a 24 12某公司开发一个新的项目,总投入约 11500000000 元,11500000000 用科学记数法表示为 .13. 请写一个随机事件:.14. 若 , ,则 .1yx5xy15若正多边形的一个外角是 45,则该正多边形的边数是 . 16已知扇形的圆心角为 90,半径为 6cm,
6、则用该扇形围成的圆锥的侧面积为 cm.17.如图,ABC 中,点 D 是 AC 中点,点 E 在 BC 上且 EC3BE,BD 、AE 交于点 F,如果BEF的面积为 2,则ABC 的面积为 18面积为 40 的ABC 中,AC BC10,ACB90,半径为 1.5 的O 与 AC、BC 都相切,则 OC 的长为 .三、解答题(本大题共 10 小题,共 84 分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19 (本题满分 8 分)(1)计算:2018 0tan30( ) 1 ; (2)化简: (x y) x (xy)1320 (本题满分 8 分)(1)解方程: ; (2
7、)解不等式组:0432x 2x 7 x 10,x 23 2 x )21 (本题满分 8 分)已知,如图,等边ABC 中,点 D 为 BC 延长线上一点,点 E 为 CA 延长线上一点,且 AEDC.求证:ADBE FEDCBA(第 18 题)(第 17 题)ACB DEABCO数学试卷 第 4 页共 9 页22 (本题满分 6 分)某校为了解全校 2400 名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整) (1)这次调查中,一共抽取了多少名学生?(2)补
8、全频数分布直方图;(3)估计全校所有学生中有多少人乘坐公交车上学 410242824201612840上上上上上上上上上上上上上上上上上上上上上上 上上上上上上 30%上上20%上上23.(本题满分 8 分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的. (1)如果有 2 个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率 (请用“画树状图”或“列表” 等方法写出分析过程)(2)如果有 n 个路口,则小明在每个路口都没有遇到红灯的概率是 .数学试卷 第 5 页共 9 页24 (本题满分 8 分)如图,以矩形 ABCD 的边 CD
9、 为直径作O ,交对角线 BD 于点 E,点 F 是 BC 的中点,连接EF(1)试判断 EF 与O 的位置关系,并说明理由(2)若 DC2,EF 3,点 P 是O 上不与 E、C 重合的任意一点,则EPC 的度数为(直接写出答案)25 (本题满分 8 分)如图,已知点 D、E 分别在 ACD 的边 AB 和 AC 上,已知 DEBC,DEDB (1)请用直尺和圆规在图中画出点 D 和点 E(保留作图痕迹,不要求写作法) ,并证明所作的线段 DE 是符合题目要求的;(2)若 AB7,BC3,请求出 DE 的长26 (本题满分 10 分)已知二次函数 0)的对称轴与 x 轴交于点 B,与直线 l
10、: 交于点maxy(42 xy21C,点 A 是该二次函数图像与直线 l 在第二象限的交点,点 D 是抛物线的顶点,已知ACCO12,DOB45,ACD 的面积为 2(1) 求抛物线的函数关系式;(2) 若点 P 为抛物线对称轴上的一个点,且POC45,求点 P 坐标.A B C 数学试卷 第 6 页共 9 页27 (本题满分 10 分)某品牌 T 恤专营批发店的 T 恤衫在进价基础上加价 m%销售,每月销售额 9 万元,该店每月固定支出 1.7 万元,进货时还需付进价 5%的其它费用. (1)为保证每月有 1 万元的利润,m 的最小值是多少?(月利润总销售额总进价固定支出其它费用)(2)经市
11、场调研发现,售价每降低 1%,销售量将提高 6%,该店决定自下月起降价以促进销售,已知每件 T 恤原销售价为 60 元,问:在 m 取(1)中的最小值且所进 T 恤当月能够全部销售完的情况下,销售价调整为多少时能获得最大利润,最大利润是多少?28 (本题满分 10 分)已知:矩形 ABCD 中,AB 4,BC3,点 M、N 分别在边 AB、CD 上,直线 MN 交矩形对角线 AC 于点 E,将AME 沿直线 MN 翻折,点 A 落 在 点 P 处 , 且点 P 在射线 CB 上.(1) 如图 1,当 EPBC 时,求 CN 的长;(2) 如图 2,当 EPAC 时,求 AM 的长;(3) 请写
12、出线段 CP 的长的取值范围,及当 CP 的长最大时 MN 的长.(备用图)(图 1)AB CDNPME(图 2)AB CDNPM EAB CD数学试卷 第 7 页共 9 页初三阶段性测试 数学答案 2018.031、选择题(每题 3 分,共 24 分)1.C 2.C 3.A 4.A 5.D 6.B 7.A 8.C 9.D 10.B2、填空题(每题 2 分,共 16 分)11. (a2)(a 2); 12. 1.15 1010; 13. 略; 14. 6; 15. 8; 16. ; 17. 40; 18. . 94533、解答题(10 小题题,共 84 分)19.(1)原式2 (4 分) ;
13、(2)原式y 2xy (4 分)320. (1) , ; (4 分) ; (2)1x 3 (4 分)x1221. 证明:在等边ABC 中,ABCA ,BACACB60,EAB DCA120 (2 分)在EAB 和DCA 中, (5 分)AE DC, EAB DCA,AB CA )EAB DCA, (6 分)ADBE (8 分)22. 解:(1)被抽到的学生中,骑自行车上学的学生有 24 人,占整个被抽到学生总数的 30%,抽取学生的总数为 2430%80(人) (2 分)(2)被抽到的学生中,步行的人数为 8020%16 人, (3 分)直方图略(画对直方图得一分) (4 分)(3)被抽到的学
14、生中,乘公交车的人数为 80(2416104)26,全校所有学生中乘坐公交车上学的人数约为 2400780 人(6 分)268023.(1)正确列出表格(或者正确画出树状图) ; (4 分)P(在第二个路口第一次遇到红灯) ; (6 分)9(2)P(每个路口都没有遇到红灯)(8 分)n)32(24. 解:解:(1)EF 与O 相切 (1 分) ;数学试卷 第 8 页共 9 页yxOEP2P1DCBA证明过程略 (5 分) ;(2)60或 120(注:只对一个得 1 分,两个都对得 3 分) (8 分)25. (1) 作CBA 的平分线交 AC 于点 E (2 分)作 BE 的垂直平分线交 AB
15、 于点 D(注:点 D 的作法较多,比如作BEDCBE 也可,只要正确都给分) (4 分) 证得 DEBC,DEDB (6 分)(2) DE2.1 (8 分)26. 解:(1)对称轴:直线 x2m ,AC:CO1:2,则顶点 D(2m,2m) ,C(2m,m ),CDm,A(3m, ) ,23 mm2,解得:m2 (3 分)12 D( 4,4)解得 a(4 分)41(5 分)xy12(注:本题中若学生分 a0 和 a0 两种情况讨论并由对称性说明 a0 是不存在的,可以酌情加 1 分)(2) P1(4,12) ), P2(4 , ) (注:得到一个给 3 分,得到两个给 5 分)327. 解:
16、(1) 设销售量为 a 万件,每件进价为 x 元,根据题意得:(或 )(3 分)9%)1(1057.9max 1%05197.m解得:m50 m 的最小值为 50.(4 分)(2)原销售量为: 0.15 万件,即 1500 件,设每件 T 恤降价 x 元销售,60则销售量为 1500(1 )件,设该月产生的利润为 W 元,x根据题意,得:W(60401.05)1500(16 )17000(8 分)60x150x 216800x 458000 124)(15所以,当 x4 即售价为 60456 元时,W 最大值 12400 元(10 分)数学试卷 第 9 页共 9 页答:略28. 解:(1)AM
17、E 沿直线 MN 翻折,点 A 落在点 P 处,AMEPME. AEMPEM,AEPE.ABCD 是矩形, ABBC .EPBC, AB/ EP.AMEPEM. AEM AME. AMAE. (1 分)ABCD 是矩形, AB/ DC. . CNCE.(2 分)MECN设 CN CEx. ABCD 是矩形,AB4,BC 3, AC5. PE AE5 x.EPBC, . . (3 分)4sin5EPAB4x ,即 . ( 4 分)259x29(2)AME 沿直线 MN 翻折,点 A 落在点 P 处,AMEPME. AEPE,AMPM .EPAC, . .4tan3EPCBEAC5, , . . (6 分)207A15207EPAC, .215() . ( 7 分)5437PBC在 RtPMB 中, ,AMPM. 22MPB . . (8 分)24()AA109(3) ,当 CP 最大时 MN .(10 分)05P352