ImageVerifierCode 换一换
格式:PPT , 页数:34 ,大小:5.27MB ,
资源ID:30488      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-30488.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教A版高中数学必修二:1.1 空间几何体的结构课件2)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

人教A版高中数学必修二:1.1 空间几何体的结构课件2

1、1.1 空间几何体的结构,第一章 空间几何体,在现实生活中,我们的周围存在着各种各样的 物体,它们具有不同的几何形状。,空间几何体,如果我们只考虑物体的形状和大小,而不考 虑其它因素,那么由这些物体抽象出来的空 间图形就叫做空间几何体。,请观察下图中的物体,我要问,这些图片中的物体具有什么样的几何 结构特征?你能对它们进行分类吗?,我来答,上图中的物体大体可分为两大类.其中(2),(5),(7),(9),(13),(14),(15),(16) 具有相同的特点:组成几何体的每个面都是平面图形,并且都是平面多边形; (1),(3),(4),(6),(8),(10),(11),(12) 具有相同的特

2、点:组成它们的面不全是平面图形.,想一想?,我们应该给上述两大类几何 体取个什么名字才好呢?,定义:,1.由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。,2.由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴。,下面我们来探究柱,锥,台,球的结构特征,1.棱柱的结构特征,请仔细观察下列几何体,说说它们的共同特点.,定义:有两个面互相平行,其余各面都是 四边形,并且每相邻两个四边形的公共边 都互相平行,由这些面围成的几何体 叫做棱柱。,棱柱的有关

3、概念,棱柱中,两个互相平行的面 叫棱柱的底面(简称底), 其余各面叫棱柱的侧面, 相邻侧面的公共边叫侧棱, 侧面与底面的公共顶点叫 棱柱的顶点。,(1)底面互相平行,(2)侧面都是平行四边形,(3)侧棱平行且相等,棱柱的分类:棱柱的底面可以是三角形、四边形、五边形、 我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、,三棱柱,四棱柱,五棱柱,1. 侧棱不垂直于底的棱柱叫做斜棱柱 2.侧棱垂直于底的棱柱叫做直棱柱 3. 底面是正多边形的直棱柱叫做正棱柱,棱柱的表示,用底面各顶点的字母表示棱柱, 如图所示的六棱柱表示为: “棱柱ABCDEFABCDEF”,理解棱柱,探究1:,一个长方体,能作为 棱柱

4、底面的有几对?,答:长方体有三对平行平面;这三对都可以作为棱柱的底面,探究2:,观察右边的棱柱,共有多少对平行平面?能作为棱柱的底面的有几对?,答:四对平行平面;只有一对可以作为棱柱的底面,棱柱的任何两个平行平面都可以作为棱柱的底面吗?,答:不是,2.棱锥的结构特征,请仔细观察下列几何体,说说它们的共同特点.,定义:有一个面是多边形,其余各面都是 有一个公共顶点的三角形,由这些面 所围成的几何体叫做棱锥。,S,A,B,C,D,棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱。,棱锥的有关概念,棱锥的表

5、示,用表示顶点和底面各顶点的字母表示,如图所示的棱锥表示为:“棱锥SABCD”,棱锥的分类:,按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、,棱锥的性质:,侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。,用一个平行于棱锥底面的平面去截棱锥,得到怎样的两个几何体?,想一想:,用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.,3.棱台的结构特征,棱台的有关概念:,棱台的分类:由三棱锥、四棱锥、五棱锥截得的棱台,分别叫做三棱台,四棱台,五棱台,棱台的表示方法:“棱台ABCDABCD”,棱台的特点:两个底面是相似多边形,侧面都是梯形

6、;侧棱延长后交于一点。,练习:下列几何体是不是棱台,为什么?,(1),(2),想一想,怎样给多面体分类呢?,答:可以按面数分类,多面体有几个面就称为几面体。如:三棱锥是四面体,四棱柱是六面体.,思考:棱柱、棱锥和棱台都是多面体,当底面发生变化时,它们能否互相转化?,A,A,定义:以矩形的一边所在直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱。,(1)圆柱的轴旋转轴. (2)圆柱的底面垂直于轴的边旋转而成的圆面。 (3)圆柱的侧面平行于轴的边旋转而成的曲面。 (4)圆柱侧面的母线无论旋转到什么位置,不垂直于轴的边。,B,O,B,O,4.圆柱的结构特征,圆柱的表示方法:用表示它的轴的字母

7、表示,如:“圆柱OO”,S,A,B,O,定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。,5.圆锥的结构特征,圆锥的表示方法:用表示它的轴的字母表示,如:“圆锥SO”,定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.,6.圆台的结构特征,想一想:圆台能否用旋转的方法得到?若能,请指出用什么图形?怎样旋转?,思考:圆柱、圆锥和圆台都是旋转体,当底面发生变化时,它们能否互相转化?,O,半径,球心,定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.,7.球的结构特征,球的表示方法:用表示球心的字母表示,如:“球O”,练

8、习:见P8页A组第1题的(4)小题,第2题.,几何体的分类,柱体,锥体,台体,球,多面体,旋转体,知识小结,简单几何体的结构特征,柱体,锥体,台体,球,棱柱,圆柱,棱锥,圆锥,棱台,圆台,8.简单组合体的结构特征,观察下图所示的几何体,说一说它们各由哪些简单几何体组合而成?,由简单几何体组合而成的几何体叫简单组合体。,简单组合体的结构特征,简单组合体构成的两种基本形式:,A、由简单几何体拼接而成,B、由简单几何体截去或挖去一部分而成,练一练:将一个直角梯形绕其较短的底所在的直线旋转一周得到一个几何体,关于该几何体的以下描绘中,正确的是( ),A、是一个圆台 B、是一个圆柱 C、是一个圆柱和一个圆锥的简单组合体 D、是一个圆柱被挖去一个圆锥后所剩的几何体,D,练习:见P8页A组第3题,第4题,第5题.,有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?,答:不一定是 如图所示的几何体, 不是棱柱,探究3:,长方体按如图截去一角后所得的两部分还是棱柱吗?,探究4:,A,B,C,D,A,B,C,D,E,F,G,H,F,E,H,G,答:都是棱柱,