ImageVerifierCode 换一换
格式:DOC , 页数:26 ,大小:464KB ,
资源ID:29719      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-29719.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新疆乌鲁木齐市2018年中考数学模拟试卷(一)含答案解析)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

新疆乌鲁木齐市2018年中考数学模拟试卷(一)含答案解析

1、2018 年新疆乌鲁木齐市中考数学模拟试卷(一)一选择题(共 10 小题,满分 40 分,每小题 4 分)1 (4 分)已知 a、b、c 在数轴上位置如图,则|a+b|+|a +c|bc|=( )A0 B2a+2b C2b2 c D2a+2c2 (4 分)如图,已知直线 AB、CD 被直线 AC 所截,ABCD,E 是平面内任意一点(点 E 不在直线 AB、CD 、AC 上) ,设BAE=,DCE=下列各式:+, , ,360 ,AEC 的度数可能是( )A B C D3 (4 分)若 5x=125y,3 y=9z,则 x:y:z 等于( )A1 :2 :3 B3:2:1 C1:3:6 D6:

2、2:14 (4 分)下列说法中,正确的是( )A “打开电视,正在播放新闻联播节目”是必然事件B某种彩票中奖概率为 10%是指买 10 张一定有一张中奖C了解某种节能灯的使用寿命应采用全面检查D一组数据 3,5,4,6,7 的中位数是 5,方差是 25 (4 分)如图,在四边形 ABCD 中,对角线 AC 平分DAB,ABD=52,ABC=116, ACB=,则BDC 的度数为( )A B C90 D90 6 (4 分)利用一次函数 y=ax+b 的图象解关于 x 的不等式 ax+b0,若它的解集是 x2,则一次函数 y=ax+b 的图象为( )A B C D7 (4 分)在今年抗震赈灾活动中

3、,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款 2500 元,乙班捐款 2700 元;(2)乙班平均每人捐款数比甲班平均每人捐款数多 ;(3)甲班比乙班多 5 人,设甲班有 x 人,根据以上信息列方程得( )A BC (1+ )= D8 (4 分)已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为( )A12 cm2 B15 cm2 C24 cm2 D30 cm29 (4 分)如图,在矩形 ABCD 中,AD=10,AB=14,点 E 为 DC 上一个动点,若将ADE 沿 AE 折叠,当点 D 的对应点 D落在ABC 的角平分线上时,则点 D到 AB 的距离为( )A

4、6 B6 或 8 C7 或 8 D6 或 710 (4 分)如图所示,已知 A(0.2 ,y 1) ,B(2,y 2)为反比例函数 y= 图象上的两点,动点 P(x ,0)在 x 轴正半轴上运动,当线段 AP 与线段 BP 之差达到最大时,点 P 的坐标是( )A (0.5,0 ) B (1,0) C (1.5 ,0) D (2.5,0)二填空题(共 5 小题,满分 20 分,每小题 4 分)11 (4 分)计算:(2) 2+(2017 ) 0( 2) 3= 12 (4 分)如图,已知菱形 ABCD 对角线交于点 O,AECD 于 E,AE=OD ,则CAE= 13 (4 分)元旦到了,商店进

5、行打折促销活动妈妈以八折的优惠购买了一件运动服,节省 30 元,那么妈妈购买这件衣服实际花费了 元14 (4 分)某景区修建一栋复古建筑,其窗户设计如图所示圆 O 的圆心与矩形 ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点) ,与左右两边相交(F,G 为其中两个交点) ,图中阴影部分为不透光区域,其余部分为透光区域已知圆的半径为 1m,根据设计要求,若EOF=45,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为 15 (4 分)在平面直角坐标系中,A( 2,0) ,B( 1, 6 ) ,若抛物线y=ax2+(a+2 )x+2 与线段 AB 有且仅有一个公共点,则 a

6、的取值范围是 三解答题(共 9 小题,满分 90 分)16 (8 分)解关于 x 的不等式组: ,其中 a 为参数17 (8 分)附加题:(y z) 2+(xy) 2+(zx) 2=(y+z2x) 2+(z +x2y)2+(x+y2z ) 2求 的值18 (10 分)某种水果的价格如表:购买的质量(千克)不超过 10 千克超过 10 千克每千克价格来源:学。科。网 Z。X。X 。K 6 元 5 元张欣两次共购买了 25 千克这种水果(第二次多于第一次) ,共付款 132 元问张 欣第一次、第二次分别购买了多少千克这种水果?19 (10 分)如图 1,在平行四边形 ABCD 中,E,F 分别在边

7、 AD,AB 上,连接CE,CF,且满足DCE=BCF,BF=DE,A=60 ,连接 EF(1)若 EF=2,求AEF 的面积;(2)如图 2,取 CE 的中点 P,连接 DP,PF,DF,求证:DPPF 20 (12 分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450 户居民的生活用水情况,他从中随机调查了 50 户居民的月均用水量(单位:t) ,并绘制了样本的频数分布表和频数分布直方图(如图) 月均用水量(单位:t)频数 百分比2x 3 2 4%3x 4 12 24%4x 5 5x 6 10 20%6x 7 12%7x 8 3 6%8x 9 2 4%(1)请根据题中已有的信

8、息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于 4t 且小于 7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在 2x 3,8x9 这两个范围内的样本家庭中任意抽取2 个,请用列举法(画树状图或列表)求抽取出的 2 个家庭来自不同范围的概率21 (10 分)如图,海中有一小岛 P,在距小岛 P 的 海里范围内有暗礁,一轮船自西向东航行,它在 A 处时测得小岛 P 位于北偏东 60,且 A、P 之间的距离为 32 海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明如果有危险,轮船自 A 处开始至少沿东偏南

9、多少度方向航行,才能安全通过这一海域?22 (10 分)A、B 两辆汽车同时从相距 330 千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图, L1,L 2 分别表示两辆汽车的 s 与 t 的关系(1)L 1 表示哪辆汽车到甲地的距离与行驶时间的关系?来源: 学科网 ZXXK(2)汽车 B 的速度是多少?(3)求 L1,L 2 分别表示的两辆汽车的 s 与 t 的关系式(4)2 小时后,两车相距多少千米?(5)行驶多长时间后,A、B 两车相遇?23 (10 分)如图,AB 为 O 的直径,C 为O 上一点,AD 和过点 C 的切线互相垂直,垂足为 D(

10、1)求证:AC 平分DAB;(2)若 CD=4,AD=8,试求O 的半径24 (12 分)已知,抛物线 y=ax2+ax+b(a0)与直线 y=2x+m 有一个公共点M(1,0) ,且 ab(1)求 b 与 a 的关系式和抛物线的顶点 D 坐标(用 a 的代数式表示) ;(2)直线与抛物线的另外一个交点记为 N,求DMN 的面积与 a 的关系式;(3)a=1 时,直线 y=2x 与抛物线在第二象限交于点 G,点 G、H 关于原点对称,现将线段 GH 沿 y 轴向上平移 t 个单位(t0 ) ,若线段 GH 与抛物线有两个不同的公共点,试求 t 的取值范围2018 年新疆乌鲁木齐市中考数学模拟试

11、卷(一)参考答案与试题解析一选择题(共 10 小题,满分 40 分,每小题 4 分)1【解答】解:由图可知,ca0b,|c|b|a|,则|a +b|+|a+c|bc|=a+bacb+c=0故选:A2【解答】解:点 E 有 4 种可能位置(1)如图,由 ABCD,可得AOC= DCE 1=,AOC=BAE 1+AE 1C,AE 1C=(2)如图,过 E2 作 AB 平行线,则由 ABCD,可得1=BAE 2=,2= DCE 2=,AE 2C=+(3)如图,由 ABCD,可得BOE 3=DCE 3=,BAE 3=BOE 3+AE 3C,AE 3C=(4)如图,由 ABCD,可得BAE 4+AE 4

12、C+DCE 4=360,AE 4C=360AEC 的度数可能为 , +, ,360故选:D3【解答】解:5 x=(5 3) y=53y,3 y=(3 2) z=32z,x=3y,y=2z,即 x=3y=6z;设 z=k,则 y=2k,x=6k ;(k0)x:y:z=6k:2k :k=6: 2:1故选:D4【解答】解:A、打开电视,正在播放新闻联播节目是随机事件,故本选项错误;B、某种彩票中奖概率为 10%,买这种彩票 10 张不一定会中奖,故本选项错误;C、了解某种节能灯的使用寿命应采用抽样调查,故本选项错误;D、一组数据 3,5,4,6,7 的中位数是 5,方差是 2 ,故本选项正确故选:D

13、5【解答】解:如图,过 C 作 CEAB 于 E,CFBD 于 F,CGAD 于 G,ABD=52 ,ABC=116,DBC=CBE=64,BC 平分 DBE,CE=CF,又AC 平分 BAD,CE=CG,CF=CG ,又CGAD,CFDB ,CD 平分BDG,CBE 是ABC 的外角, DBE 是ABD 的外角,ACB=CBECAB= (DBE DAB )= ADB,ADB=2ACB=2 ,BDG=180 2,BDC= BDG=90 ,故选:C6【解答】解:不等式 ax+b0 的解集是 x2,当 x2 时,函数 y=ax+b 的图象在 x 轴下方故选:A7【解答】解:甲班每人的捐款额为: ,

14、乙班每人的捐款额为: 根据(2)中所给出的信息,方程可列为: (1+ )= 故选:C8【解答】解:这个圆锥的高为 4cm,底面圆的半径为 4cm,所以圆锥的母线长= =5(cm) ,所以圆锥的侧面积= 235=15(cm 2) 故选:B9【解答】解:如图,连接 BD,过 D作 MNAB ,交 AB 于点 M,CD 于点 N,作 DPBC 交 BC 于点 P点 D 的对应点 D落在ABC 的角平分线上,MD=PD,又DMB=MBP= BPD=90,四边形 BPDM 为正方形,设 MD=x,则 PD=BM=x,AM=AB BM=14x,又折叠可得 AD=AD=10,RtADM 中,x 2+(14

15、x) 2=102,解得 x=6 或 8,即 MD=6 或 8, 点 D到 AB 的距离为 6 或 8,故选:B10【解答】解:把 A(0.2,y 1) ,B(2,y 2)代入 y= 得 y1=5,y 2= ,则 A 点坐标为(0.2,5) ,B 点坐标为(2, ) ,设直线 AB 的解析式为 y=kx+b,把 A(0.2,5) ,B(2, )代入得 ,解得 ,所以直线 AB 的解析式为 y=y= x+ ,因为|PA PB|AB ,所以当点 P 为直线 AB 与 x 轴的交点时,线段 AP 与线段 BP 之差达到最大,把 y=0 代入 y= x+ ,得 0= x+ 解得 x= ,所以 P 点坐标

16、为( ,0) 二填空题(共 5 小题,满分 20 分,每小题 4 分)11【解答】解:(2) 2+(2017 ) 0( 2) 3=4+1+8=13故答案为:1312【解答】解:菱形 ABCD,ACBD,AD=DC,AE CD,AEC=DOC=90,AOD=AED=90 , AFO=DFE,AFODFE ,CAE=CDO,在AEC 和 DOC 中,AEC DOC(ASA) ,AC=CD,AC=CD=AD,即ACD 为等边三角形,AE CD,AE 为CAD 的平分线,则CAE=30 故答案为:30 13【解答】解:设这件运动服的标价为 x 元,则:妈妈购买这件衣服实际花费了 0.8x 元,妈妈以八

17、折的优惠购买了一件运动服,节省 30 元可列出关于 x 的一元一次方程:x0.8x=30解得:x=1500.8 x=120故妈妈购买这件衣服实际花费了 120 元,故答案为 12014【解答】解:设O 与矩形 ABCD 的另一个交点为 M,连接 OM、OG,则 M、O 、E 共线,由题意得:MOG=EO F=45,FOG=90,且 OF=OG=1,S 透明区域 = +2 11= +1,过 O 作 ONAD 于 N,ON= FG= ,AB =2ON=2 = ,S 矩形 =2 =2 , = = 故答案为: 15【解答】解:当抛物线过 A 点,B 点为临界,代入 A(2 ,0)则 4a2(a+2)+

18、2=0,解得:a=1,代入 B(1,6) ,则 a+(a+2)+2= 6,解得:a=5,又 a0,所以 a 的取值范围是5a1 且 a0故答案为5a1 且 a0三解答题(共 9 小题,满分 90 分)16【解答】解: ,解不等式得:3a5x13a, ax ,解不等式得:3a5x 1+3a,ax ,当 a= a 时,a=0,当 = 时,a=0,当 a= 时,a= ,当 a= 时,a= ,当 或 时,原不等式组无解; 当 时,原不等式组的解集为: ;当 时,原不等式组的解集为: 1 7【解答】解:(yz) 2+(xy) 2+(zx) 2=(y+z 2x) 2+(z +x2y) 2+(x+y2z)2

19、(yz ) 2(y+z 2x) 2+(xy) 2(x +y2z) 2+(z x) 2(z+x2y) 2=0,(yz +y+z2x) (yzyz+2x)+(xy+x +y2z) (xyxy+2z)+(zx +z+x2y)(zx zx+2y)=0,2x 2+2y2+2z22xy2xz2yz=0,(xy ) 2+(xz ) 2+(yz) 2=0x,y,z 均为实数,x=y=z = =118【解答】解:设张欣第一次、第二次购买了这种水果的量分别为 x 千克、y 千克,因为第二次购买多于第一次,则 x12.5 y 当 x10 时, ,解得 ;当 10x12.5 时, ,此方程组无解答:张欣第一次、第二次

20、购买了这种水果的量分别为 7 千克、18 千克19【解答】 (1)解:四边形 ABCD 是平行四边形,D=B,BF=DE , DCE=BCF ,CDECBF(AAS) ,CD=CB,ABCD 是菱形,AD=AB,ADDE=ABBF,即 AE=AF,A=60,AEF 是等边三角形,EF=2,S AEF = 22= ;(2)证明:如图 2,延长 DP 交 BC 于 N,连结 FN, 来源:学科网四边形 ABCD 是菱形,ADBC, 来源 :学+科+ 网EDP=PNC,DEP=PCN ,点 P 是 CE 的中点,CP=EPCPNEPD,DE=CN,PD=PN 又AD=BCADDE=BCCN,即 AE

21、=BNAEF 是等边三角形,AEF=60 ,EF=AEDEF=120,EF=BNADBC,A+ABC=180,又A=60,ABC=120 ,ABC=DEF 又DE=BF , BN=EFFBN DEF,DF=NF,PD=PN,PF PD20【解答】解:(1)调查的总数是:24%=50(户) ,则 6x7 部分调查的户数是:5012%=6 (户) ,则 4x5 的户数是:50 21210632=15(户) ,所占的百分比是: 100%=30%故答案为:15,30% ,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有 450(30%+20% +12%)=279 (户) ;(3

22、)在 2x3 范围的两户用 a、b 表示,8x 9 这两个范围内的两户用 1,2 表示画树状图:则抽取出的 2 个家庭来自不同范围的概率是: = 21【解答】解:过 P 作 PBAM 于 B,在 RtAPB 中,PAB=30,PB= AP= 32=16 海里,1616 ,故轮船有触礁危险为了安全,应该变航行方向,并且保证点 P 到航线的距离不小于暗礁的半径 16海里,即这个距离至少为 16 海里,设安全航向为 AC,作 PDAC 于点 D,由题意得,AP=32 海里, PD=16 海里,sin PAC= = = ,在 RtPAD 中,PAC=45,BAC=PACPAB=4530=15答:轮船自

23、 A 处开始至少沿南偏东 75度方向航行,才能安全通过这一海域22【解答】解:(1)由函数图形可 知汽车 B 是由乙地开往甲地,故 L1 表示汽车B 到甲地的距离与行驶时间的关系;(2) (330 240)60=1.5(千米/ 分) ;(3)设 L1 为 s1=kt+b,把点(0,330) , (60 ,240 )代入得k=1.5,b=330所以 s1=1.5t+330;设 L2 为 s2=kt,把点(60,60)代入得k=1所以 s2=t;(4)当 t=120 时,s 1=150,s 2=120150120=30(千米) ;所以 2 小时后,两车相距 30 千米;(5)当 s1=s2 时,1

24、.5t+330=t解得 t=132即行驶 132 分钟,A、B 两车相遇23【解答】 (1)证明:如图 1,连接 OC,CD 是切线,OCCDADCD ,ADOC,1=4来源:Zxxk.ComOA=OC,2=4,1=2,AC 平分 DAB(2)解:如图 2,作 OEAD 于点 E,设O 的半径为 x,ADCD , OEAD ,OECD;由(1) ,可得 ADOC,四边形 OEDC 是矩形,OE=CD=4,AE=ADDE=8x,4 2+(8 x) 2=x2,8016x +x2=x2,解得 x=5,O 的半径是 524【解答】解:(1)抛物线 y=ax2+ax+b 有一个公共点 M(1,0) ,a

25、 +a+b=0,即 b=2a,y=ax 2+ax+b=ax2+ax2a=a(x+ ) 2 ,抛物线顶点 D 的坐标为( , ) ;(2)直线 y=2x+m 经过点 M(1,0) ,0=21+m,解得 m=2,y=2x2,则 ,得 ax2+(a2 ) x2a+2=0,(x1) (ax+2a2)=0,解得 x=1 或 x= 2,N 点坐标为( 2, 6) ,a b ,即 a2a ,a 0 ,如图 1,设抛物线对称轴交直线于点 E,抛物线对称轴为 x= = ,E ( ,3) ,M( 1,0) ,N ( 2, 6) ,设DMN 的面积为 S,S=S DEN+S DEM= |( 2)1| ( 3)|= ,(3)当 a=1 时,抛物线的解析式为:y=x 2x+2=(x ) 2+ ,有 ,x2x+2=2x,解得:x 1=2, x2=1,G(1,2) ,点 G、H 关于原点对称,H (1,2) ,设直线 GH 平移后的解析式为:y=2x+t,x2x+2=2x+t,x2x2+t=0,=14(t2)=0 ,t= ,当点 H 平移后落在抛物线上时,坐标为(1,0) ,把(1,0)代入 y=2x+t,t=2,当线段 GH 与抛物线有两个不同的公共点,t 的取值范围是 2t