1、人教版九年级上册数学第22章二次函数单元测试卷学校:_姓名:_班级:_考号:_一、单选题1下列抛物线中,其顶点是抛物线的最高点的是()ABCD2抛物线与轴交点的横坐标分别为()A,B3,4C,4D3,3二次函数的图象经过的象限为()A第一、二象限B第二、四象限C第三、四象限D第一、三象限4已知,二次函数的图象与x轴交于点、两点,则当时,则y的值为()A2019B2017C2018D5将抛物线,先向上平移个单位,再向左平移个单位,所得新抛物线的函数关系式为()ABCD6如图,用绳子围成周长为的矩形,记矩形的一边长为,矩形的面积为当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数表达式
2、为() ABCD7如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作ABAC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()Ab1Bb1CbDb18在同一坐标系中,二次函数的图象与一次函数的图象可能是()A B C D 9如图,某大门的形状是一抛物线形建筑,大门的地面宽,在两侧距地面高处有两个挂单位名牌匾用的铁环,两铁环的水平距离是若按图所示建立平面直角坐标系,则抛物线的解析式是()(建筑物厚度忽略不计)ABCD10二次函数y=ax2+bx+c(a、b、c为常数且a
3、0)中的x与y的部分对应值如下表:x321012345y12503430512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为3;(2)当x2时,y0;(3)ab+c=0;(4)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧则其中正确结论的个数是()A1B2C3D4二、填空题11若关于的函数的图象是抛物线,则的值是 12已知函数的图象上有,三点,则,的大小关系 (按照从小到大的顺序排列)13过点的一条直线与轴、轴分别相交于点,且与直线平行,则在线段上,横、纵坐标都是整数的点坐标是 14二次函数的图象如图所示,若关于x的一元二次方程有实数根,则m的最大值
4、为 15如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是 16如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于点B,C,则BC的长为 三、解答题17已知抛物线的顶点坐标为(2,1),且过点(1,2)(1)求此抛物线的函数解析式;(2)直接写出该抛物线的开口方向及对称轴18把一根长的铁丝分为两部分,每一部分均弯曲成一个正方形,它们的面积和最小是多少?19如图,四点在抛物线上,且轴,与轴的交点分别为,已知,求的值及的长20如图,已知抛物线与一直线相交于两点,与y轴交于点N其顶点为D(1)求抛物线及直线的函数表达式;(2)设点,求
5、使的值最小时m的值;(3)若点P是抛物线上位于直线上方的一个动点,过点P作轴交于点Q,求的最大值21一隧道内设双行公路,隧道的高MN为6米下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离若行车道总宽度PQ(居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG,使H、G两点在抛物线上,A、B两点在地面DE上,
6、设GH长为n米,“脚手架”三根木杆AG、GH、HB的长度之和为L,当n为何值时L最大,最大值为多少?22某汽车清洗店,清洗一辆汽车定价20元时每天能清洗45辆,定价25元时每天能清洗30辆,假设清洗汽车辆数(辆)与定价(元)(取整数)是一次函数关系(清洗每辆汽车成本忽略不计).(1)求与之间的函数表达式;(2)若清洗一辆汽车定价不低于15元且不超过50元,且该汽车清洗店每天需支付电费、水费和员工工资共计200元,问:定价为多少时,该汽车清洗店每天获利最大?最大获利多少?23如图,已知二次函数经过点和点C0,3,(1)求该二次函数的解析式;(2)如图,若一次函数经过、两点,直接写出不等式的解;(3)点是抛物线的对称轴上一点,当的值最小时,求点的坐标第 5 页 共 8 页参考答案1D2D3C4D5A6A7B8C9A10C111213(1,4),(3,1)14715或16617(1)y(x2)21;(2)该抛物线的开口向上,对称轴为直线x21819,20(1)抛物线为,直线AC为(2)(3)的最大值为21(1)y=-x2+4;(2)能安全通过(3)n=4时,L有最大值,最大值为1422(1);(2)当定价为17元或18元,汽车清洗店每天获利最大,最大值为718元23(1)(2)(3)第 1 页 共 8 页