1、计数原理与概率统计一、单选题1(2024全国)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在之间,单位:kg)并部分整理下表亩产量900,950)950,1000)1000,1050)1100,1150)1150,1200)频数612182410据表中数据,结论中正确的是()A100块稻田亩产量的中位数小于1050kgB100块稻田中亩产量低于1100kg的稻田所占比例超过80%C100块稻田亩产量的极差介于200kg至300kg之间D100块稻田亩产量的平均值介于900kg至1000kg之间2(2024全国)甲、乙、丙、丁四人排成一列,丙不在排头,且甲或
2、乙在排尾的概率是()ABCD3(2024北京)的二项展开式中的系数为()A15B6CD4(2024天津)下列图中,相关性系数最大的是()ABCD二、多选题5(2024全国)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则()(若随机变量Z服从正态分布,)ABCD三、填空题6(2024全国)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的
3、卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 .7(2024全国)在如图的44方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 8(2024全国)的展开式中,各项系数的最大值是 9(2024全国)有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记为前两次取出的球上数字的平均值,为取出的三个球上数字的平均值,则与差的绝对值不超过的
4、概率是 10(2024天津)五种活动,甲、乙都要选择三个活动参加.(1)甲选到的概率为 ;已知乙选了活动,他再选择活动的概率为 11(2024上海)在的二项展开式中,若各项系数和为32,则项的系数为 12(2024上海)某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72现他从所有的题中随机选一题,正确率是 13(2024上海)设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 四、解答题14(2024全国)设m为正整数
5、,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列(1)写出所有的,使数列是可分数列;(2)当时,证明:数列是可分数列;(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:15(2024全国)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和某参赛队由甲、乙两名队员组成,设甲每次投中的概率为
6、p,乙每次投中的概率为q,各次投中与否相互独立(1)若,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率(2)假设,(i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii)为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?16(2024全国)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有的把握认为甲、乙两车间产品的优级品率存在差
7、异?能否有的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率,设为升级改造后抽取的n件产品的优级品率.如果,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?()附:0.0500.0100.001k3.8416.63510.82817(2024北京)已知某险种的保费为万元,前3次出险每次赔付万元,第4次赔付万元赔偿次数01234单数在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率;(2)(i)毛利润是保费与赔偿金额之差设毛利润为,估计的数学期望;()若未
8、赔偿过的保单下一保险期的保费下降,已赔偿过的增加估计保单下一保险期毛利润的数学期望18(2024上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示: 时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,)参考答案1C【分析】计算出前三段频数即可判断A;计算出低于1100kg的
9、频数,再计算比例即可判断B;根据极差计算方法即可判断C;根据平均值计算公式即可判断D.【解析】对于 A, 根据频数分布表可知, ,所以亩产量的中位数不小于 , 故 A 错误;对于B,亩产量不低于的频数为,所以低于的稻田占比为,故B错误;对于C,稻田亩产量的极差最大为,最小为,故C正确;对于D,由频数分布表可得,亩产量在的频数为,所以平均值为,故D错误.故选;C.2B【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解.【解析】当甲排在排尾,乙排第一位,丙有种排法,丁就种,共种;当甲排在排尾,乙排第二位或第三位,丙有种排法,丁就种,共种;于是甲排在排尾共种方法,同理乙
10、排在排尾共种方法,于是共种排法符合题意;基本事件总数显然是,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为.故选:B3B【分析】写出二项展开式,令,解出然后回代入二项展开式系数即可得解.【解析】的二项展开式为,令,解得,故所求即为.故选:B.4A【分析】由点的分布特征可直接判断【解析】观察4幅图可知,A图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,值相比于其他3图更接近1.故选:A5BC【分析】根据正态分布的原则以及正态分布的对称性即可解出.【解析】依题可知,所以,故,C正确,D错误;因为,所以,因为,所以,而,B正确,A错误,故选:BC6/
11、0.5【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【解析】设甲在四轮游戏中的得分分别为,四轮的总得分为.对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率,所以.从而.记.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以.而的所有可能取值是0,1,2,3,故,.所以,两式相减即得,故.所以甲的总得分不小于2的概率为.故答案为:.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题
12、,利用期望的可加性得到等量关系,从而避免繁琐的列举.7 24 112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【解析】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有种选法;每种选法可标记为,分别表示第一、二、三、四列的数字,则所有的可能结果为:,所以选中的方格中,的4个数之和最大,为.故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.
13、85【分析】先设展开式中第项系数最大,则根据通项公式有,进而求出即可求解.【解析】由题展开式通项公式为,且,设展开式中第项系数最大,则,即,又,故,所以展开式中系数最大的项是第9项,且该项系数为.故答案为:5.9【分析】根据排列可求基本事件的总数,设前两个球的号码为,第三个球的号码为,则,就的不同取值分类讨论后可求随机事件的概率.【解析】从6个不同的球中不放回地抽取3次,共有种,设前两个球的号码为,第三个球的号码为,则,故,故,故, 若,则,则为:,故有2种,若,则,则为:,故有10种,当,则,则为:,故有16种,当,则,同理有16种,当,则,同理有10种,当,则,同理有2种,共与的差的绝对值
14、不超过时不同的抽取方法总数为,故所求概率为.故答案为:10 【分析】结合列举法或组合公式和概率公式可求甲选到的概率;采用列举法或者条件概率公式可求乙选了活动,他再选择活动的概率.【解析】解法一:列举法从五个活动中选三个的情况有:,共10种情况,其中甲选到有6种可能性:,则甲选到得概率为:;乙选活动有6种可能性:,其中再选则有3种可能性:,故乙选了活动,他再选择活动的概率为.解法二:设甲、乙选到为事件,乙选到为事件,则甲选到的概率为; 乙选了活动,他再选择活动的概率为故答案为:;1110【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【解析】令,即,解得,所以的展开式通项公式为,令,则
15、,故答案为:10120.85【分析】求出各题库所占比,根据全概率公式即可得到答案.【解析】由题意知,题库的比例为:, 各占比分别为,则根据全概率公式知所求正确率故答案为:0.8513329【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【解析】由题意知集合中且至多只有一个奇数,其余均是偶数首先讨论三位数中的偶数,当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个故答案为:32914(1)(2)证明见解析(3)
16、证明见解析【分析】(1)直接根据可分数列的定义即可;(2)根据可分数列的定义即可验证结论;(3)证明使得原数列是可分数列的至少有个,再使用概率的定义.【解析】(1)首先,我们设数列的公差为,则.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形,得到新数列,然后对进行相应的讨论即可.换言之,我们可以不妨设,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从中取出两个数和,使得剩下四个数是等差数列.那么剩下四个数只可能是,或,或.所以所有可能的就是.(2)由于从数列中取出和后,剩余的个数可以分为以下两个部分,共组,使得每组
17、成等差数列:,共组;,共组.(如果,则忽略)故数列是可分数列.(3)定义集合,.下面证明,对,如果下面两个命题同时成立,则数列一定是可分数列:命题1:或;命题2:.我们分两种情况证明这个结论.第一种情况:如果,且.此时设,.则由可知,即,故.此时,由于从数列中取出和后,剩余的个数可以分为以下三个部分,共组,使得每组成等差数列:,共组;,共组;,共组.(如果某一部分的组数为,则忽略之)故此时数列是可分数列.第二种情况:如果,且.此时设,.则由可知,即,故.由于,故,从而,这就意味着.此时,由于从数列中取出和后,剩余的个数可以分为以下四个部分,共组,使得每组成等差数列:,共组;,共组;全体,其中,
18、共组;,共组.(如果某一部分的组数为,则忽略之)这里对和进行一下解释:将中的每一组作为一个横排,排成一个包含个行,个列的数表以后,个列分别是下面这些数:,. 可以看出每列都是连续的若干个整数,它们再取并以后,将取遍中除开五个集合,中的十个元素以外的所有数.而这十个数中,除开已经去掉的和以外,剩余的八个数恰好就是中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列是可分数列.至此,我们证明了:对,如果前述命题1和命题2同时成立,则数列一定是可分数列.然后我们来考虑这样的的个数.首先,由于,和各有个元素,故满足命题1的总共有个;而如果,假设,则可设,代入得.但这导致,矛盾,所以.设,则,
19、即.所以可能的恰好就是,对应的分别是,总共个.所以这个满足命题1的中,不满足命题2的恰好有个.这就得到同时满足命题1和命题2的的个数为.当我们从中一次任取两个数和时,总的选取方式的个数等于.而根据之前的结论,使得数列是可分数列的至少有个.所以数列是可分数列的概率一定满足.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.15(1)(2)(i)由甲参加第一阶段比赛;(i)由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i)首先各自计算出,再作差因式分解即可判断;(ii)首先得到和的所有
20、可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【解析】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,比赛成绩不少于5分的概率.(2)(i)若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩的所有可能取值为0,5,10,15,记乙先参加第一阶段比赛,数学成绩的所有可能取值为0,5,10,15,同理,因为,则,则,应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相
21、关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.16(1)答案见详解(2)答案见详解【分析】(1)根据题中数据完善列联表,计算,并与临界值对比分析;(2)用频率估计概率可得,根据题意计算,结合题意分析判断.【解析】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得,因为,所以有的把握认为甲、乙两车间产品的优级品率存在差异,没有的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为,用频率估计概率可得,又因为升级改造前该工厂产品的优级品率,则,可知,所以可以认为生产线智能化升级改造后,该工厂产品
22、的优级品率提高了.17(1)(2)(i)0.122万元(ii)万元【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)()设为赔付金额,则可取,用频率估计概率后可求的分布列及数学期望,从而可求.()先算出下一期保费的变化情况,结合(1)的结果可求.【解析】(1)设为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得.(2)()设为赔付金额,则可取,由题设中的统计数据可得,故故(万元).()由题设保费的变化为,故(万元)18(1)(2)(3)有【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【解析】(1)由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为(2)估计该地区初中生的日均体育锻炼时长约为则估计该地区初中学生日均体育锻炼的时长为0.9小时.(3)由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关其中则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关