ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.37MB ,
资源ID:256432      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-256432.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北京市海淀区2024年高三一模数学试卷(含答案))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北京市海淀区2024年高三一模数学试卷(含答案)

1、北京市海淀区2024年高三一模数学试卷第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)已知全集,集合,则(A)(B)(C)(D)(2)若复数满足,则的共轭复数 (A) (B)(C) (D)(3)已知为等差数列,为其前项和若,且公差,则的值为(A) (B)(C) (D)(4)已知向量满足,且,则(A) (B)(C) (D)(5)若双曲线(,)上的一点到焦点的距离比到焦点的距离大,则该双曲线的方程为(A) (B) (C) (D)(6)设是两个不同的平面,是两条直线,且,则“”是“”的(A)充分而不必要条件(B)必要而不

2、充分条件(C)充分必要条件 (D)既不充分也不必要条件(7)已知函数的零点个数为,过点与曲线相切的直线的条数为,则,的值分别为(A), (B),(C), (D),(8)在平面直角坐标系中,角以为始边,终边在第三象限则(A) (B)(C) (D)(9)函数是定义在上的偶函数,其图象如图所示,. 设是的导函数,则关于的不等式的解集是(A) (B)(C) (D)(10)某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图. 通过观察发现,该黏菌繁殖符合如下规律:黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为),再沿直线繁殖,; 每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距

3、离的一半. 于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心开始,沿直线繁殖到,然后分叉向与方向继续繁殖,其中,且与关于所在直线对称,.若,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径(,单位:)至少为图1图2(A) (B)(C) (D)第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。(11)已知,则 (12)已知:,线段是过点的弦,则的最小值为 (13)若,则 ;_(14)已知函数,则 ;函数的图象的一个对称中心的坐标为 (15)已知函数,给出下列四个结论:函数是奇函数;,且,关于的方程恰有两个不相等的实数根;已知是曲线上

4、任意一点,则;设为曲线上一点,为曲线上一点.若,则其中所有正确结论的序号是 三、解答题共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。(16)(本小题13分)在中,.()求;()若,求的面积. (17)(本小题14分)如图,在四棱锥中,为的中点,平面.()求证:;()若,再从条件、条件、条件这三个条件中选择一个作为已知,使四棱锥存在且唯一确定. ()求证:平面;()设平面平面,求二面角的余弦值.条件:;条件:; 条件:.注:如果选择的条件不符合要求,第()问得分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(18)(本小题13分)科普测试成绩科普过程性积分人数 某学校为提

5、升学生的科学素养,要求所有学生在学年中完成规定的学习任务,并获得相应过程性积分. 现从该校随机抽取名学生,获得其科普测试成绩(百分制,且均为整数)及相应过程性积分数据,整理如下表:()当时,()从该校随机抽取一名学生,估计这名学生的科普过程性积分不少于分的概率;()从该校科普测试成绩不低于分的学生中随机抽取名,记为这名学生的科普过程性积分之和,估计的数学期望;()从该校科普过程性积分不高于分的学生中随机抽取一名,其科普测试成绩记为,上述名学生科普测试成绩的平均值记为. 若根据表中信息能推断恒成立,直接写出的最小值. (19)(本小题15分)已知椭圆:的离心率为,分别是的左、右顶点,是的右焦点.

6、()求的值及点的坐标; ()设是椭圆上异于顶点的动点, 点在直线上,且,直线与轴交于点. 比较与的大小.(20)(本小题15分)已知函数()求的单调区间; ()若函数,存在最大值,求的取值范围. (21)(本小题15分)已知:(,)为有穷正整数数列,其最大项的值为, 且当时,均有(). 设,对于,定义,其中,表示数集中最小的数.()若:,写出,的值;()若存在满足:,求的最小值;()当时,证明:对所有,.参考答案一、选择题(共10小题,每小题4分,共40分)(1)D(2)A(3)B(4)C (5)D(6)A(7)B(8)C(9)D (10)C二、填空题(共5小题,每小题5分,共25分)(11)

7、 (12)(13) (14) (答案不唯一)(15)三、解答题(共6小题,共85分)(16)(共13分)解:()由正弦定理及,得. 因为,所以.所以. 所以.因为,所以,即.()由余弦定理得.因为,所以.因为,所以.所以的面积为.(17)(共14分)解:()取的中点,连接,.因为为的中点,所以,. 因为,所以. 所以,四点共面.因为平面,平面平面,所以.所以.所以. ()取的中点,连接,.由()知.所以.因为,所以四边形是平行四边形.所以,.因为,所以.所以,即.选条件:.()因为,所以.所以.因为,所以.所以,即. 所以平面.()由()知平面.所以.因为,如图建立空间直角坐标系. 则,.所以

8、,. 设平面的法向量为 ,则即 令,则,.于是. 因为为平面的法向量,且,所以二面角的余弦值为.选条件:.()所以.因为,所以.所以,即. 因为,所以平面.()同选条件(18)(共13分)解:()当时,()由表可知,科普过程性积分不少于分的学生人数为.所以从该校随机抽取一名学生,这名学生的科普过程性积分不少于分的频率为所以从该校随机抽取一名学生,这名学生的科普过程性积分不少于分的概率估计为()根据题意,从样本中成绩不低于分的学生中随机抽取一名,这名学生的科普过程性积分为分的频率为.所以从该校学生活动成绩不低于分的学生中随机抽取一名,这名学生的科普过程性积分为分的概率估计为. 同理,从该校学生活

9、动成绩不低于分的学生中随机抽取一名,这名学生的科普过程性积分为分的概率估计为.由表可知的所有可能取值为,所以的数学期望()(19)(共15分)解:()由题意知. 设,则.因为的离心率为,所以,即所以,.所以的值为,点的坐标为()由题意可设 (),则,. 因为,所以.所以. 因为,三点共线,所以. 由可得.由()可知,.所以.所以,即.(20)(共15分)解:()因为,所以.令,得与的变化情况如下表:所以,函数的单调递增区间是;单调递减区间是()令,则.由()可得:函数的单调递增区间是;单调递减区间是所以在时取得最大值.所以当时,;当时,即当时,.所以在上存在最大值的充分必要条件是,即.令,则.

10、因为,所以是增函数.因为,所以的充要条件是.所以的取值范围为.(21)(共15分)解:(), ()由题意知. 当时,因为,所以.因为,且,均为正整数,所以,或.所以.因为,是互不相等的正整数,所以必有一项大于.所以.所以,不合题意.当时,对于数列:有.综上所述,的最小值为.()因为, 所以,.()若,则当时,至少以下情况之一成立:,这样的至多有个;存在,这样的至多有个.所以小于的至多有个.所以.令,解得.所以.()对,若,且,因为,所以当时,至少以下情况之一成立: ,这样的至多有个; 存在,且,这样的至多有个.所以.令,解得,即,其中表示不大于的最大整数.所以当时,;综上所述,定义,则.依次可得:,.所以.