ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:104.52KB ,
资源ID:254394      下载积分:50 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-254394.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年大联盟(Math League)国际夏季六年级数学挑战活动二(含答案))为本站会员(优****虫)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2022年大联盟(Math League)国际夏季六年级数学挑战活动二(含答案)

1、Speed Questions (Grade 6)2022 Math League International Summer Challenge (Unofficial version, for reference only)Note:Listed below are the four types of coins currently being minted in United States.a. Penny: 1b. Nickel: 5c. Dime: 10d. Quarter: 251.(-1)100 =A) -1B) 1C) -100D) 100Answer: B2.(x + 2) +

2、 (2x + 4) + (3x + 6) + (4x + 8) =A) x + 20B) 9x + 20C) 10x + 20D) 20x + 20Answer: C3.(y + 2)(y 2) =A) y2 4B) y2 2y + 4C) y2 + 2y + 4D) y2 + 4 Answer: A154.1 + 2 + 3 + . + 100 =2 + 4 + 6 + . + 200A) 1 200B) 1 100C) 1 2D) 100Answer: C5. (x2)(x3)(x4) =A) x5B) x9C) x24D) x234Answer: B6.x2 10x + 24 = A)

3、(x 12)(x + 2)B) (x 6)(x 4)C) (x + 12)(x 2)D) (x + 6)(x + 4)Answer: B7.If n 0, which inequality is always true?A) n pB) -n pC) 1 1npD) 1 0 does(32 + 42) + (32 + 42) + (32 + 42) + (32 + 42) = n2?Answer: 1049.What is the largest possible area of a rectangle with integer sides and perimeter 22? Answer:

4、3050.The sum of the squares of the lengths of the four legs of two right triangles is 100. If the length of the hypotenuse of one of the triangles is 6, how long is the hypotenuse of the other triangle?Answer:851.The values of x which satisfy both |x 8| 5 are precisely the values of x that satisfy a

5、 x b. What is a + b?Answer: 2252.Disregarding order, we can write 4 as a sum of one or more integers, each a power of 2, in only four ways: 4, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1. In at most how many different ways can 5 be written as such a sum?Answer: 453.A plane is partitioned into 2 regions by 1

6、 line and into 4 regions by 2 intersecting lines. Into how many disjoint regions do 5 coplanar lines partition the plane, if no 2 of the lines are parallel and no 3 of them are concurrent?Answer: 1654.Two noncongruent circles are externally tangent. Each base of an isosceles trapezoid is a diameter

7、of one of the circles. If the distance between the centers of the circles is8, what is the area of the trapezoid? Answer: 6455.The 4th term of a sequence is 4 and the 6th term is 6. Every term after the 2nd is the sum of the 2 preceding terms. What is the 8th term of this sequence?Answer: 1456.One d

8、iagonal of a square serves as the shorter base of a trapezoid, and a line through one of the vertices of the square contains the other base. The legs of the trapezoid are extensions of two sides of the square. If the area of the square is 2800, what is the area of the trapezoid?Answer: 420057.Figure

9、 below, the blue circle is the incircle of triangle ABC. (The incircle is the circle which lies inside a triangle and touches all sides.) O is the center the incircle. D is the center of the circle which touches AC and the extensions of BA and BC. Is it true that points B, O, and D are always collin

10、ear, i.e., lying on the same straight line, for any triangle ABC?Choices:(a) Yes(b) No Answer: (a)58.For any integer n 1, 1 + 2 + 3 + . . . + (n 1) + n = (n + 2) + . . . + (2n 1) + (2n) =2n2 + nn(n + 1) . Then, n + (n + 1) +2A)23n2 - nB)23n2 + nC)23n2 + 3nD)2Answer: D59.A series of 7 books was published at 9-year intervals. When the 7th book was published, the sum of the publication years was 13 601. In what year was the 4th book published?Answer: 194360.Semicircles drawn on each side of a triangle have areas of 9, 16, and 25. What is the area of the triangle?Answer: 48