ImageVerifierCode 换一换
格式:DOCX , 页数:24 ,大小:1.50MB ,
资源ID:250140      下载积分:50 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-250140.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022-2023学年江苏省南京市建邺区高二上月考数学试卷(10月份)含答案解析)为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2022-2023学年江苏省南京市建邺区高二上月考数学试卷(10月份)含答案解析

1、2022-2023学年江苏省南京市建邺区高二上月考数学试卷(10月份)一、单选题(本题共8小题,每小题5分,共40分.)1. 若cos2,且,则sin( )A. B. C. D. 2. 已知复数(i是虚数单位),则( )A. B. C. D. 3. 从3男2女共5名医生中,抽取2名医生参加社区核酸检测工作,则至少有1名女医生参加的概率为( )A. B. C. D. 4. 古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A,B的距离为2,动点满足,若点不在直线AB上,则面积的最大值为( )A. 1B. C. 2D

2、. 5. 在轴截面顶角为直角圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为( )A. B. 2C. D. 6. 如图,在中,P为上一点,且满足,若,则的值为( )A. -3B. C. D. 7. 正三棱锥PABC的三条棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为()A. 1:3B. 1:C. D. 8. 设椭圆的左、右焦点分别为,点M,N在C上(M位于第一象限),且点M,N关于原点O对称,若,则椭圆C的离心率为( )A. B. C. D. 二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对

3、的得5分,部分选对的得2分,有选错的得0分.)9. 上级某部门为了对全市名初二学生的数学水平进行监测,将获得的样本数学水平分数数据进行整理分析,全部的分数可按照,分成组,得到如图所示的频率分布直方图则下列说法正确的是( )A. 图中的值为B. 估计样本数据的分位数为C. 由样本数据可估计全市初二学生数学水平分数低于分的人数约为D. 由样本数据可估计全市初二学生数学水平分数分及以上的人数占比为10. 如图,已知长方体中,四边形为正方形,分别为,的中点.则( )A. B. 点四点共面C. 直线与平面所成角的正切值为D. 三棱锥的体积为11. 某次数学考试的一道多项选择题,要求是:“在每小题给出的四

4、个选项中,全部选对的得5分,部分选对的得3分,有选错的得0分”已知某选择题的正确答案是CD,且甲、乙、丙、丁四位同学都不会做,下列表述正确的是( )A. 甲同学仅随机选一个选项,能得3分的概率是B. 乙同学仅随机选两个选项,能得5分的概率是C. 丙同学随机选择选项,能得分的概率是D. 丁同学随机至少选择两个选项,能得分概率是12. 已知椭圆:,分别为它的左右焦点,分别为它的左右顶点,点是椭圆上的一个动点,下列结论中正确的有( )A. 存在P使得B. 的最小值为C. ,则的面积为9D. 直线与直线斜率乘积为定值三、填空题(本题共4小题,每小题5分,共20分)13. 甲、乙二人做射击游戏,甲、乙射

5、击击中与否是相互独立事件规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击已知甲、乙二人射击一次击中的概率均为,且第一次由甲开始射击,则第4次由甲射击的概率_14. 已知双曲线的左右焦点分别为,过的直线与双曲线的左右两支分别交于,两点.若,且,则该双曲线的离心率为_.15. 点在轴上运动,点在直线上运动,若,则的周长的最小值为_.16. 已知点M是椭圆上的一动点,点T的坐标为,点N满足,且MNT90,则的最大值是_四、解答题(本大题共6题,共70分.解答应写出文字说明,证明过程或演算步骤)17. 在平行四边形中,点E是线段的中点(1)求直线方程;(2)求过点A且与直

6、线垂直的直线18. 在中,.(1)求B;(2)若周长为,求边上中线的长.19. 如图,在四棱锥中,底面ABCD是边长为1的菱形,底面ABCD,M为OA的中点,N为BC的中点.(1)证明:直线面OCD;(2)求点B到平面OCD的距离.20. 我省从2021年开始,高考不分文理科,实行“3+1+2”模式,其中“3”指的是语文、数学,外语这3门必选科目,“1”指的是考生需要在物理、历史这2门首选科目中选择1门,“2”指的是考生需要在思想政治、地理、化学、生物这4门再选科目中选择2门。已知福建医科大学临床医学类招生选科要求是首选科目为物理,再选科目为化学、生物至少1门。(1)从所有选科组合中任意选取1

7、个,求该选科组合符合福建医科大学临床医学类招生选科要求的概率;(2)假设甲、乙、丙三人每人选择任意1个选科组合是等可能,求这三人中恰好有一人的选科组合符合福建医科大学临床医学类招生选科要求的概率.21. 设双曲线的左,右焦点分别为,左,右顶点分别为A,B,以AB为直径的圆与双曲线的渐近线在第一象限的交点为P,若为等腰三角形,求直线的倾斜角22. 知椭圆E:的左右焦点分别为,过且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为(1)求椭圆E的方程;(2)如图,下顶点为A,过点作一条与y轴不重合的直线.该直线交椭圆E于C,D两点.直线AD,AC分别交x轴于点H,求证:与的面积之积为定值,并求出该定

8、值.2022-2023学年江苏省南京市建邺区高二上月考数学试卷(10月份)一、单选题(本题共8小题,每小题5分,共40分.)1. 若cos2,且,则sin( )A. B. C. D. 【答案】A【解析】【分析】利用二倍角公式可解得的值,再根据的范围可确定的具体值.【详解】解:因为,所以,解得.又因为,所以,即.故选:A.【点睛】本题考查余弦函数的二倍角公式,考查根据角的范围判断正弦函数的正负,属于基础题.2. 已知复数(i是虚数单位),则( )A. B. C. D. 【答案】A【解析】【分析】根据复数的乘、除法运算求出z,进而求出,结合复数的几何意义即可求解.【详解】,得,则故选:A3. 从3

9、男2女共5名医生中,抽取2名医生参加社区核酸检测工作,则至少有1名女医生参加的概率为( )A. B. C. D. 【答案】C【解析】【分析】由条件列出样本空间,确定样本空间的基本事件数,再确定事件至少有1名女医生包含的基本事件数,利用古典概型概率公式求其概率.【详解】解:将3名男性医生分别设为a,b,c,2名女性医生分别设为d,e,这个实验的样本空间可记为,共包含10个样本点,记事件A为至少有1名女医生参加,则,则A包含的样本点个数为7,故选:C4. 古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A,B的距离

10、为2,动点满足,若点不在直线AB上,则面积的最大值为( )A. 1B. C. 2D. 【答案】B【解析】【分析】根据给定条件,求出点P的轨迹方程,再求出点P到直线AB距离的最大值即可计算作答.【详解】以点A为原点,直线AB为x轴建立平面直角坐标系,如图,则,设点,由得:,即,整理得:,因此点P的轨迹是以点为圆心,为半径的圆,则P到直线AB距离的最大值为,所以面积的最大值为.故选:B5. 在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为( )A. B. 2C. D. 【答案】D【解析】【分析】根据题意画出圆锥的轴截面,结合图形设出

11、圆柱的底面圆半径和高,以及圆锥的底面半径和高,求出母线长,再列方程求得圆柱的底面半径与圆锥的底面半径之比【详解】解:如图所示,为圆锥的轴截面,设圆柱的底面圆半径为,高为,圆锥的底面半径为,则圆锥的高为,母线长为,由题意知,即;由相似边成比例得,即,即,即圆柱的底面半径与圆锥的底面半径的比值为故选:D6. 如图,在中,P为上一点,且满足,若,则的值为( )A -3B. C. D. 【答案】C【解析】【分析】根据三点共线求出,然后把当基底表示出和,从而求的值.【详解】因为,所以,所以,因为三点共线,所以,即,所以,又,所以.故选:C.7. 正三棱锥PABC的三条棱两两互相垂直,则该正三棱锥的内切球

12、与外接球的半径之比为()A. 1:3B. 1:C. D. 【答案】D【解析】【分析】设侧棱长为,用补形法求得外接球的半径,用体积法求得内切球的半径后即可得【详解】三棱锥扩展为长方体(本题实质上是正方体),它的对角线的长度,就是球的直径,设侧棱长为a,则它的对角线的长度为a,外接球的半径为,再设正三棱锥内切球的半径为r,正三棱锥底面边长为,设是内切球球心,则到棱锥四个面的距离都等于,根据三棱锥的体积的两种求法,得,该正三棱锥的内切球与外接球的半径之比为故选:D8. 设椭圆的左、右焦点分别为,点M,N在C上(M位于第一象限),且点M,N关于原点O对称,若,则椭圆C的离心率为( )A. B. C.

13、D. 【答案】C【解析】【分析】根据椭圆的定义及所给条件可得出,再由勾股定理可得,据此可求出离心率得解.【详解】依题意作图,由于,并且线段MN,互相平分,四边形是矩形,其中,设,则,根据勾股定理,整理得,由于点M在第一象限,由,得,即,整理得,即,解得故选:C二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 上级某部门为了对全市名初二学生的数学水平进行监测,将获得的样本数学水平分数数据进行整理分析,全部的分数可按照,分成组,得到如图所示的频率分布直方图则下列说法正确的是( )A. 图中的值为B.

14、估计样本数据的分位数为C. 由样本数据可估计全市初二学生数学水平分数低于分的人数约为D. 由样本数据可估计全市初二学生数学水平分数分及以上的人数占比为【答案】AB【解析】【分析】根据频率之和为1可判断A,由百分位数的计算可求解B,根据频率分布直方图可得每个分数段的占比,即可判断CD.【详解】对于A;频率分布直方图中小长方形的总面积为,组距为,故,解得,故A正确;对于B;设的百分位数为,落在区间中,即,解得,故B正确;对于C;分以下的人占比为,故全市初二学生数学水平分数低于分的人数约为,故C错误,对于D;分以下的人占比为,故D错误.故选:AB10. 如图,已知长方体中,四边形为正方形,分别为,的

15、中点.则( )A. B. 点四点共面C. 直线与平面所成角的正切值为D. 三棱锥的体积为【答案】BCD【解析】【分析】利用反证法判断A;利用直线平行判断B;利用线面角的定义判断C;利用锥体体积公式判断D.【详解】对于A,假设,由题意知平面,平面,又,平面,由长方体性质知与平面不垂直,故假设不成立,故A错误;对于B,连接,由于,分别为,的中点,又因为长方体,知,所以点四点共面,故B正确;对于C,由题意可知平面,为直线与平面所成角,在直角中,则,故C正确;对于D,连接,则,利用等体积法知:,故D正确故选:BCD11. 某次数学考试的一道多项选择题,要求是:“在每小题给出的四个选项中,全部选对的得5

16、分,部分选对的得3分,有选错的得0分”已知某选择题的正确答案是CD,且甲、乙、丙、丁四位同学都不会做,下列表述正确的是( )A. 甲同学仅随机选一个选项,能得3分的概率是B. 乙同学仅随机选两个选项,能得5分的概率是C. 丙同学随机选择选项,能得分的概率是D. 丁同学随机至少选择两个选项,能得分的概率是【答案】ABC【解析】【分析】对各项中的随机事件,计算出基本事件的总数和随机事件中含有的基本事件的个数,再计算出相应的概率后可得正确的选项.【详解】甲同学仅随机选一个选项,共有4个基本事件,分别为,随机事件“若能得3分”中有基本事件,故“能得3分”的概率为,故A正确.乙同学仅随机选两个选项,共有

17、6个基本事件,分别为:,随机事件“能得5分”中有基本事件,故“能得5分”的概率为,故B正确.丙同学随机选择选项(丙至少选择一项),由A、B中的分析可知共有基本事件种,分别为:选择一项:;选择两项:;选择三项或全选:,随机事件“能得分”中有基本事件,故“能得分”的概率为,故C正确.丁同学随机至少选择两个选项,有C的分析可知:共有基本事件11个,随机事件“能得分”中有基本事件,故“能得分”的概率为,故D错.故选:ABC.【点睛】方法点睛:古典概型的概率的计算,关键是基本事件的总数和随机事件中基本事件的个数的计算,计算时可采用枚举法、树形图等帮助计数(个数较少时),也可以利用排列组合的方法来计数(个

18、数较大时).12. 已知椭圆:,分别为它的左右焦点,分别为它的左右顶点,点是椭圆上的一个动点,下列结论中正确的有( )A. 存在P使得B. 的最小值为C. ,则的面积为9D. 直线与直线斜率乘积为定值【答案】ABC【解析】【分析】设椭圆短轴顶点为根据得的最大角为钝角即可判断A;记,则,结合余弦定理与基本不等式求解判断B;结合题意得,进而计算面积判断C;设,直接求解即可判断D.【详解】解:设椭圆短轴顶点为,由题知椭圆:中,所以,对于A选项,由于,所以的最大角为钝角,故存在P使得,正确;对于B选项,记,则,由余弦定理: ,当且仅当时取“=”,B正确;对于C选项,由于,故 ,所以,C正确;对于D选项

19、,设,则,于是,故错误.故选:ABC三、填空题(本题共4小题,每小题5分,共20分)13. 甲、乙二人做射击游戏,甲、乙射击击中与否是相互独立事件规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击已知甲、乙二人射击一次击中的概率均为,且第一次由甲开始射击,则第4次由甲射击的概率_【答案】【解析】【分析】根据题意,分4种情况讨论,即可求得第4次由甲射击的概率【详解】根据题意,第4次由甲射击分为4种情况:甲连续射击3次且都击中;第1次甲射击击中,但第2次没有击中,第3次由乙射击没有击中;第1次甲射击没有击中,且乙射击第二次击中,但第3次没有击中;第1次甲没有击中,且乙射

20、击第2次没有击中,第3次甲射击击中,所以这件事的概率为.故答案为:14. 已知双曲线的左右焦点分别为,过的直线与双曲线的左右两支分别交于,两点.若,且,则该双曲线的离心率为_.【答案】【解析】【分析】利用双曲线的定义,结合,且,可求得,进而得到答案.【详解】因为在双曲线的左右支上,所以,得,即,又,所以,得,又,所以离心率.故答案为:.15. 点在轴上运动,点在直线上运动,若,则的周长的最小值为_.【答案】【解析】【分析】设A关于轴的对称点关于的对称点,利用对称将的周长的最小值转化为求的长度,求得的坐标,由两点间距离公式即可求得答案.【详解】设A关于轴的对称点关于的对称点,的周长,取等号时即共

21、线时,的周长的值最小,即的长度即为三角形周长的最小值,由题意,设点 ,解得,所以,由两点距离公式知.故答案为:.16. 已知点M是椭圆上一动点,点T的坐标为,点N满足,且MNT90,则的最大值是_【答案】【解析】【分析】由给定条件,可得,再求出最大值即可计算作答.【详解】设点,则,即,当时,而,因此,所以当点时,取得最大值.故答案:四、解答题(本大题共6题,共70分.解答应写出文字说明,证明过程或演算步骤)17. 在平行四边形中,点E是线段的中点(1)求直线的方程;(2)求过点A且与直线垂直的直线【答案】(1); (2)【解析】【分析】(1)根据中点坐标公式求出E的坐标,根据直线方程的两点式或

22、点斜式即可求AE的方程;(2)设,根据平行四边形对角线互相平分列方程组求出D的坐标,根据两直线垂直,斜率之积为-1求出直线斜率,再根据直线方程的点斜式即可得到答案【小问1详解】由中点坐标公式得,直线的方程为,即【小问2详解】设点,平行四边形的对角线互相平分,即BD中点和AC中点重合,解得,即D(1,2),则过点A且与直线垂直的直线斜率为:,方程为:,即18. 在中,.(1)求B;(2)若的周长为,求边上中线的长.【答案】(1); (2).【解析】【分析】(1)利用正弦定理,结合二倍角的正弦公式进行求解即可;(2)根据余弦定理,结合(1)的结论进行求解即可.【小问1详解】根据正弦定理由,因为,所

23、以,即,所以;【小问2详解】由(1)可知,而,所以,因此,由余弦定理可知:,因为的周长为,所以有,设边上中点为,所以,由余弦定理可知:,所以边上中线的长.19. 如图,在四棱锥中,底面ABCD是边长为1的菱形,底面ABCD,M为OA的中点,N为BC的中点.(1)证明:直线面OCD;(2)求点B到平面OCD的距离.【答案】(1)证明见解析 (2).【解析】【分析】(1)建立空间直角坐标系,求出相关法向量,证明向量点乘为0即可;(2)利用第(1)问的空间直角坐标系,转化为投影向量相关问题求解点到平面距离即可.【小问1详解】过A作交CD于点P.如图示,分别以,为x、y、z轴正方向建立坐标系,则,.,

24、.设平面OCD的法向量为,则不妨取,解得:.因为,直线面OCD,所以面OCD.【小问2详解】设点B到平面OCD的距离为d,则d为在向量上的投影的绝对值,由,得.20. 我省从2021年开始,高考不分文理科,实行“3+1+2”模式,其中“3”指的是语文、数学,外语这3门必选科目,“1”指的是考生需要在物理、历史这2门首选科目中选择1门,“2”指的是考生需要在思想政治、地理、化学、生物这4门再选科目中选择2门。已知福建医科大学临床医学类招生选科要求是首选科目为物理,再选科目为化学、生物至少1门。(1)从所有选科组合中任意选取1个,求该选科组合符合福建医科大学临床医学类招生选科要求的概率;(2)假设

25、甲、乙、丙三人每人选择任意1个选科组合是等可能的,求这三人中恰好有一人的选科组合符合福建医科大学临床医学类招生选科要求的概率.【答案】(1) (2)【解析】【分析】(1)由古典概型的概率公式求解,(2)由概率乘法公式与加法公式求解【小问1详解】用a,b分别表示“选择物理”“选择历史”,用c,d,e,f分别表示选择“选择化学”“选择生物”“选择思想政治”“选择地理”,则所有选科组合的样本空间,设“从所有选科组合中任意选取1个,该选科组合符合福建医科大学临床医学类招生选科要求”,则,.【小问2详解】设甲、乙、丙三人每人的选科组合符合医科大学临床医学类招生选科要求的事件分别是,由题意知事件,相互独立

26、由(1)知.记“甲、乙、丙三人中恰好有一人的选科组合符合福建医科大学临床医学类招生选科要求”,则易知事件,两两互斥,根据互斥事件概率加法公式得.21. 设双曲线的左,右焦点分别为,左,右顶点分别为A,B,以AB为直径的圆与双曲线的渐近线在第一象限的交点为P,若为等腰三角形,求直线的倾斜角【答案】【解析】【分析】先求出点坐标,再根据等腰三角形的性质得到,据此求出离心率,再根据斜率公式即可求出倾斜角.【详解】以AB为直径的圆的方程为,双曲线过第一象限的渐近线方程为由,解得由为等腰三角形,得点P在线段的中垂线上,即所以,得,即,解得或(舍)所以而,则,即,故直线倾斜角为.22. 知椭圆E:的左右焦点

27、分别为,过且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为(1)求椭圆E的方程;(2)如图,下顶点为A,过点作一条与y轴不重合直线.该直线交椭圆E于C,D两点.直线AD,AC分别交x轴于点H,求证:与的面积之积为定值,并求出该定值.【答案】(1) (2)证明见解析,【解析】【分析】(1)根据题意过且斜率为的直线设出来,令直线方程里的求出的值,把此点代入椭圆方程,再根据的关系求解.(2)把直线方程设出来,与椭圆联立得到关于的一元二次方程,韦达定理求出用来表示,然后把方程用表示出来,令方程里的,求出点的坐标,把三角形的面积用表示,同理的面积也用表示出来,所以用,表示,然后根据韦达定理代入化简可得.【小问1详解】过且斜率为的直线的方程为,令,得,由题意可得,解得,椭圆E的方程为:;【小问2详解】由题意知,直线BC的斜率存在,设直线BC:,联立,得,由,得,直线AD的方程为,令,解得,则,同理可得,【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.