ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:58.39KB ,
资源ID:247611      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-247611.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年新教材北师大版必修第二册课时作业1:周期变化(含答案解析))为本站会员(KZ)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023年新教材北师大版必修第二册课时作业1:周期变化(含答案解析)

1、课时作业1 周期变化练基础1设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(2,1)上的图象,则f(2 020)f(2 021)()A3 B2C1 D02f(x)对于任意实数x满足条件f(x2),若f(1)5,则f(f(5)()A5 BC D53已知f(x)是定义在R上的偶函数,并满足f(x2),当2x3,f(x)x,则f(5.5)()A5.5 B5.5C2.5 D2.54函数f(x)是周期为4的偶函数,当x0,2时,f(x)x1,则不等式xf(x)0在1,3上的解集为()A(1,3) B(1,1)C(1,0)(1,3) D(1,0)(0,1)5设f(x)是定义在R上的以5为

2、周期的奇函数,且满足f(1)1,f(2)2,则f(8)f(14)_6如图是一单摆,摆球从点B到点O,再到点C用时1.6 s(不计阻力).若从摆球在点B处开始计时,经过1 min后,请估计摆球相对于点O的位置 提能力7多选题给出定义:若m0得x(1,0);当x(0,1)时,由xf(x)0得x;当x(1,3)时,由xf(x)0得x(1,3),故x(1,0)(1,3),故选C.答案:C5解析:由题意可知f(8)f(810)f(2)f(2)2,f(14)f(1415)f(1)f(1)1.f(8)f(14)2(1)1.答案:16解析:由题意知,该摆球摆一个来回需用时3.2 s,因为1 min60 s(1

3、83.22.4) s,而2.4 s1.6 s0.8 s,所以1 min后摆球在点O处7解析:由题意知,xxx,则得到f(x)xx,A正确;由于kZ时,f(k)kkkk0,但由于f(x),故函数不是中心对称图形,B不正确;由题意知,函数f(x)xx的最小正周期为1,C正确;由于xxx,则得到f(x)xx为分段函数,且在,为增函数,但在区间上不是增函数,D不正确,故选AC.答案:AC8解析:ffff,f,fa,a,解得a,f(5a)f(3)f(1)f(1)1.答案:9解析:(1)证明:f(x2)f(x),f(x4)f(x2)f(x),f(x)是周期为4的周期函数(2)当x2,0时,x0,2,由已知

4、得f(x)2(x)(x)22xx2又f(x)是奇函数f(x)f(x)2xx2,f(x)x22x又当x2,4时,x42,0f(x4)(x4)22(x4)又f(x)是周期为4的周期函数f(x)f(x4)(x4)22(x4)x26x8.故当x2,4时,f(x)x26x8.10解析:若函数yf(x)的“似周期”为1,则f(x1)f(x)f(x1),即它是周期为2的周期函数,正确;若f(x)x是“似周期函数”,则存在非零常数T,对任意xR满足f(xT)xTTf(x)Tx,显然不可能,错误;若f(x)2x是“似周期函数”,则存在非零常数T,对任意xR满足f(xT)2(xT)Tf(x)T2x,即2TT,而已知函数y,yx的图象有一个交点,即非零常数T存在,所以正确答案: