ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:2.31MB ,
资源ID:245988      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-245988.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海市闵行区2022-2023学年八年级下期末数学试卷(含答案解析))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

上海市闵行区2022-2023学年八年级下期末数学试卷(含答案解析)

1、上海市闵行区2022-2023学年八年级下期末数学试卷一、选择题:(本大题共6题,每题2分,满分12分)1. 下列方程中,有实数根的方程是( )A. B. C. D. 2. 用换元法解方程时,如果设,那么原方程可化为( )A. B. C. D. 3. 一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知四边形是菱形,和是菱形的对角线,那么下列说法一定正确的是( )A. B. C. D. 5. 下列四个命题,假命题是( )A. 一组对角相等且一组对边相等的四边形是平行四边形B. 对角线相等且互相平分的四边形是矩形C. 对角线相等的菱形是正方形D. 对角

2、线互相垂直的矩形是正方形6. 下列事件是不确定事件是( )A. 太阳从西边升起B. 多边形的内角和等于360C. 三角形任意两边之差小于第三边D. 三角形任意两边之和大于第三边二、填空题(本大题共12题,每题2分,满分24分)7. 掷一枚硬币,正面朝上的概率是_8. 直线在y轴上的截距为,且平行于:,那么直线的表达式为_9. 如果将一次函数图像沿轴向上平移1个单位,那么平移后所得图像的函数解析式为_10. 方程的解是_(保留三位小数)11. 已知一次函数(是常数),如果函数值随着的增大而减小,那么的取值范围是_12. 五边形的内角和是_度13. 矩形的两条对角线的夹角为,一条对角线与较短边的和

3、为6则较长边为_14. 方程的解是_15. 如图,在梯形中,那么边的长为_16. 如果梯形的中位线长为8,那么梯形的一条底边长的取值范围是_17. 我们把连接梯形两底中点的线段叫做梯形的中底线,在梯形中,为梯形的中底线,那么线段长的范围为_18. 如图,矩形中,将线段绕点逆时针旋转,点落在边上点处,将沿直线翻折,点落在平面内的点处,那么和梯形重叠部分的面积为_三、计算题(本大题共8题,满分64分)19 解方程:20. 解方程:21. 已知:如图矩形中,和相交于点,设,(1)填空:_;(用、的式子表示)(2)在图中求作(不要求写出作法,只需写出结论即可)22. 如图,已知正方形中,为对角线,平分

4、,垂足为求的长23. 上海轨道交通23号线全长约28.6公里,共设22座站该线路串联了闵行开发区、紫竹高新、吴泾、徐汇滨江等区域,途经闵行区和徐汇区两区甲乙两个工程队修建地铁23号线如果甲乙两队合作,48个月可以完成建设工程;如果甲队单独做40个月后,剩下的工程由乙队独做,还需60个月才能完成建设工程甲乙两队单独完成地铁23号线的修建各需要几个月?24 如图,四边形中,与相交于点,(1)求证:四边形是菱形;(2)过点作点,垂足为点,连结,求证:25. 已知一次函数的图像与轴正半轴交于点,与轴负半轴交于点,以线段为底边作等腰直角,点在第一象限(1)如果,求一次函数的解析式和点的坐标;(2)如果直

5、线经过点,且以、为顶点的四边形是平行四边形,请直接写出点的坐标26. 如图,梯形中,点是延长线上一点,垂直于射线,垂足为点(1)证朋:四边形是平行四边形(2)联结,如果是等腰三角形,求线段的长度上海市闵行区2022-2023学年八年级下期末数学试卷一、选择题:(本大题共6题,每题2分,满分12分)1. 下列方程中,有实数根的方程是( )A. B. C. D. 【答案】D【解析】【分析】利用分式的意义可对A进行判断;通过算术平方根的概念可对B进行判断;通过乘方的意义可对C,D进行判断【详解】解:A.根据分式的意义,x为非零数时,故选项A中的方程无实数根;B. ,原方程没有实数解;C. ,原方程没

6、有实数解;D. 移项得,两边开立方得,故方程的解为;故选:D【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根2. 用换元法解方程时,如果设,那么原方程可化为( )A. B. C. D. 【答案】A【解析】【分析】设,原方程中用代替,这样原方程转化为:,然后把方程两边乘以y得到整式方程【详解】解:设,原方程转化为,方程两边乘以y得,故选:A【点睛】本题考查了换元法解分式方程:用一个字母代替分式方程中某一个的整体,使原分式方程转化

7、为简单的分式方程或整式方程,从而达到解决原方程的目的3. 一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据一次函数,当时函数经过第一、二、四象限进行判断即可【详解】解:因为一次函数的,所以一次函数经过第一、二、四象限,故该函数不经过第三象限,故选:C,【点睛】本题主要考查了函数图像上的点与图像的关系,图像上的点满足解析式,满足解析式的点在函数图像上并且本题还考查了一次函数的性质,都是需要熟记的内容4. 已知四边形是菱形,和是菱形的对角线,那么下列说法一定正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据菱形性

8、质逐项判断即可【详解】A.菱形的对角线不一定相等,故本项错误,不符合题意;B.菱形的对角线互相垂直,故本项正确,符合题意;C.菱形的对角线不一定等于其边长,故本项错误,不符合题意;D.菱形中,不一定与相等,故本项错误,不符合题意;故选:B【点睛】本题主要考查了菱形的性质,掌握菱形的性质是解答本题的关键5. 下列四个命题,假命题是( )A. 一组对角相等且一组对边相等的四边形是平行四边形B. 对角线相等且互相平分的四边形是矩形C. 对角线相等的菱形是正方形D. 对角线互相垂直的矩形是正方形【答案】A【解析】【分析】利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项【详解】解:A选项:

9、一组对角相等且一组对边相等的四边形不是平行四边形,故符合题意;B选项:对角线相等且互相平分的四边形是矩形,故不符合题意;C选项:对角线相等的菱形是正方形,故不符合题意;D选项:对角线互相垂直的矩形是正方形,故不符合题意故选:A【点睛】本题考查了命题与定理、平行四边形、正方形、矩形、菱形的判定等,熟练掌握相关的判定定理以及判定方法是解题的关键6. 下列事件是不确定事件的是( )A. 太阳从西边升起B. 多边形的内角和等于360C. 三角形任意两边之差小于第三边D. 三角形任意两边之和大于第三边【答案】B【解析】【分析】根据事件发生的可能性大小对每一项进行分析,即可得出答案【详解】解:A. 太阳从

10、西边升起是不可能事件,不符合题意;B. 只有四边形的内角和是360,故是不确定事件,符合题意;C. 三角形任意两边之差小于第三边是必然事件,不符合题意;D. 三角形任意两边之和大于第三边是必然事件,不符合题意;故选:B【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题(本大题共12题,每题2分,满分24分)7. 掷一枚硬币,正面朝上的概率是_【答案】#0.5【解析】【分析】根据概率的意义分析即可得解【详解】解:掷一枚硬币的情况有2种

11、,满足条件的为:正面一种,正面朝上的概率是P=【点睛】本题考查了概率的意义概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,理解概率的意义是解题的关键8. 直线在y轴上的截距为,且平行于:,那么直线的表达式为_【答案】#【解析】【分析】根据互相平行的直线的解析式k的值相等确定出k,根据“在y轴上的截距是”求出b值,即可得解【详解】解:直线平行于直线,又直线在y轴上截距是,这条直线的解析式是故答案:【点睛】本题考查了两直线平行的问题,熟记并利用平行直线的解析式的k值相等是解题的关键9. 如果将一次函数的图像沿轴向上平移1个单位,那么平移后所得图像的函数解析式为_【

12、答案】【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可【详解】解:一次函数的图象沿y轴向上平移1个单位所得函数解析式为:,即故答案为:【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键10. 方程的解是_(保留三位小数)【答案】【解析】【分析】先求出,再利用计算器求出即可【详解】解:,故答案为:【点睛】本题考查了解高次方程和近似数和有效数字,能求出是解此题的关键11. 已知一次函数(是常数),如果函数值随着的增大而减小,那么的取值范围是_【答案】#【解析】【分析】由一次函数的函数值y随x的增大而减小可得为负,从而可求得m的取值范围【详解】解:由题意

13、知,则,故答案为:【点睛】本题考查了一次函数的图象与性质,熟悉一次函数的图象与性质是关键12. 五边形的内角和是_度【答案】540【解析】【分析】根据n边形内角和为求解即可【详解】五边形的内角和是故答案为:540【点睛】本题考查求多边形的内角和掌握n边形内角和为是解题关键13. 矩形的两条对角线的夹角为,一条对角线与较短边的和为6则较长边为_【答案】【解析】【分析】根据四边形是矩形,得到,推出,根据等边三角形的判定得出是等边三角形,即可求出长,再运用勾股定理求解即可【详解】解:如图, 四边形是矩形,是等边三角形,由勾股定理得:,故答案为:【点睛】本题主要考查对矩形的性质,等边三角形的性质和判定

14、、勾股定理等知识点的理解和掌握,能根据性质得到等边三角形是解此题的关键14. 方程的解是_【答案】【解析】【分析】两边平方得出关于x的整式方程,解之求得x的值,再根据二次根式有意义的条件得出符合方程的x的值,可得答案【详解】解:两边平方得, 则或, 解得:或, 又解得:,故答案为:. 【点睛】本题主要考查无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等15. 如图,在梯形中,那么边的长为_【答案】8【解析】【分析】过点A作交于点,可得四边形是平行四边形,是等边三角形

15、,进一步得出,从而可求出边的长【详解】解:过点A作交于点,如图,四边形是平行四边形,;,是等边三角形,故答案为:8【点睛】本题主要考查了梯形,正确作出辅助线,构造平行四边形和等边三角形是解答本题的关键16. 如果梯形的中位线长为8,那么梯形的一条底边长的取值范围是_【答案】【解析】【分析】根据梯形中位线性质定理求解【详解】解:梯形的中位线长为8,梯形的一条底边长的取值范围是,故答案为:【点睛】本题考查了梯形的中位线定理,掌握“梯形的中位线等于两底和的一半”是解题的关键17. 我们把连接梯形两底中点的线段叫做梯形的中底线,在梯形中,为梯形的中底线,那么线段长的范围为_【答案】【解析】【分析】连接

16、,取的中点E,利用三角形定中位线定理以及三角形三边关系即可求解【详解】解:连接,取的中点E,连接,点P,Q分别是的中点,在中,线段长的范围为,故答案为:【点睛】本题考查了三角形中位线定理,三角形三边的关系,掌握“三角形的中位线平行于第三边并且等于它的一半”是解题的关键18. 如图,矩形中,将线段绕点逆时针旋转,点落在边上点处,将沿直线翻折,点落在平面内的点处,那么和梯形重叠部分的面积为_【答案】#【解析】【分析】中,利用勾股定理求得的长,利用折叠的性质求得,在中,利用勾股定理列方程,计算即可求解【详解】解:设与相交于点G,矩形中,在中,由折叠的性质得,设,则,在中,即,解得,即,和梯形重叠部分

17、的面积为,故答案为:【点睛】本题考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了矩形的性质三、计算题(本大题共8题,满分64分)19. 解方程:【答案】【解析】【分析】方程两边同乘以,化成整式方程,再利用因式分解法解一元二次方程即可得【详解】解:,方程两边同乘以,得,去括号,得,移项,得,因式分解,得,解得或,经检验,不是原分式方程的解;是原分式方程的解,所以方程的解为【点睛】本题考查了解分式方程,熟练掌握分式方程的解法是解题关键需注意的是,分式方程的解一定要进行检验20. 解方程:【答案】【解析】【分析】先将原方程两边同时

18、平方可得到关于x的一元二次方程,解得x,再结合原方程中二次根式的双重非负性得出x的取值范围,从而可得出结果【详解】解:原方程变形为:,即或, 又由题意可得解得,当时不满足题意,故答案为:【点睛】此题考查了解无理方程,涉及的知识点有二次根式的性质,一元二次方程的解法以及不等式组的解法,解题的关键在于掌握基本性质和运算法则.21. 已知:如图矩形中,和相交于点,设,(1)填空:_;(用、的式子表示)(2)在图中求作(不要求写出作法,只需写出结论即可)【答案】(1) (2)见解析【解析】【分析】(1)先将用,表示后,载由数量积的定义计算即可;(2)利用三角形法则画出图形即可【小问1详解】,故答案为:

19、【小问2详解】如图:即为所求;作法:延长到点,使得,则【点睛】本题考查作图,矩形性质,平面向量等,解题的关键是掌握三角形法则,22. 如图,已知正方形中,为对角线,平分,垂足为求的长【答案】【解析】【分析】利用正方形的性质求出,再根据角平分线的性质可得,进而可证明,问题随之得解【详解】正方形中,为对角线, 平分,【点睛】本题考查了正方形的性质,角平分线的性质,勾股定理等知识,证明,是解答本题的关键23. 上海轨道交通23号线全长约28.6公里,共设22座站该线路串联了闵行开发区、紫竹高新、吴泾、徐汇滨江等区域,途经闵行区和徐汇区两区甲乙两个工程队修建地铁23号线如果甲乙两队合作,48个月可以完

20、成建设工程;如果甲队单独做40个月后,剩下的工程由乙队独做,还需60个月才能完成建设工程甲乙两队单独完成地铁23号线的修建各需要几个月?【答案】甲队单独做需80个月,乙队单独做需120个月【解析】【分析】设甲队单独做需a个月,乙队单独做需b个月,根据甲工效+乙工效,甲工效乙工效进行列式求解即可【详解】解:设甲队单独做需a个月,乙队单独做需b个月,根据题意,得:,解得:经检验,是原方程组的解故甲队单独做需80个月,乙队单独做需120个月【点睛】本题主要考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,列出方程组,再求解24. 如图,四边形中,与相交于点,(1)求证:四边形是菱

21、形;(2)过点作点,垂足为点,连结,求证:【答案】(1)见详解 (2)见详解【解析】【分析】(1)证明,可得四边形为平行四边形,由则知四边形为菱形;(2)由菱形的性质知点O为的中点,即,可得,结合 ,可得,根据四边形是菱形,有,问题得证【小问1详解】四边形中,四边形是平行四边形,平行四边形是菱形,四边形是菱形;【小问2详解】四边形是菱形,在中,四边形是菱形,结合,有【点睛】本题利用了平行四边形的判定和性质,菱形的判定和性质,以及直角三角形的性质求解掌握相关图形的判定与性质是解题的关键25. 已知一次函数的图像与轴正半轴交于点,与轴负半轴交于点,以线段为底边作等腰直角,点在第一象限(1)如果,求

22、一次函数的解析式和点的坐标;(2)如果直线经过点,且以、为顶点的四边形是平行四边形,请直接写出点的坐标【答案】(1), (2)、【解析】【分析】(1)过C点分别作x轴、y轴的垂线,垂足为N、M,先求出,即利用待定系数法可得;证明四边形是矩形,即,再证明,可得矩形是正方形,即,即,可得,问题得解;(2)设,过C点分别作x轴、y轴的垂线,垂足为N、M,同(1)可证明, 进而可得,即可求出,即,在求出,设,当点D在时,以、为顶点的四边形是平行四边形,根据中点坐标公式可得:,即;当点D在时和当点D在时,同理可求解【小问1详解】如图,过C点分别作x轴、y轴垂线,垂足为N、M,设一次函数的解析式为,解得:

23、,一次函数的解析式为,等腰直角,中,四边形是矩形,即,矩形是正方形,即,;【小问2详解】设,如图,过C点分别作x轴、y轴的垂线,垂足为N、M,同(1)可证明, ,即可得四边形是正方形,直线经过点,即,即,设,如图,当点D在时,以、为顶点的四边形是平行四边形,又平行四边形的对角线互相平分,根据中点坐标公式可得:,此时;当点D在时,以、为顶点的四边形是平行四边形,同理可求出;当点D在时,以、为顶点的四边形是平行四边形,同理可求出;综上:D点坐标为:、【点睛】本题主要考查了一次函数的图象与性质,平行四边形的性质以及中点坐标公式等知识,掌握平行四边形的性质以及中点坐标公式,注重分类讨论的思想是解答本题

24、的关键26. 如图,梯形中,点是延长线上一点,垂直于射线,垂足为点(1)证朋:四边形是平行四边形(2)联结,如果是等腰三角形,求线段的长度【答案】(1)见解析 (2)或或【解析】【分析】(1)根据题意可推得,根据平行线的性质可得,根据等腰三角形的性质可得,推得,根据平行线的判定可得,根据平行四边形的判定即可证明;(2)根据平行四边形的性质可得,求得,根据直角三角形中线的性质可得,根据点所在的位置进行讨论:当点在线段上时,若,推得四边形是矩形,与与题中梯形为等腰梯形矛盾,故判得不成立;若,则,推得为等边三角形, 即点与点重合,或点与点重合,判得不成立;若,则,根据等腰三角形的性质推得,过点分别作

25、,垂足分别为,根据角平分线的性质可得,根据全等三角形的判定和性质可得,推得,根据勾股定理求得;当点在线段的延长线上时,根据等腰三角形的性质可得,推得,即可得到只存在和两种情况:若,则,根据三角形内角和定理可得,根据等腰三角形的判定和勾股定理求得,若,过点作,垂足为点,根据等腰三角形三线合一的性质可得,根据勾股定理求得【小问1详解】证明:,梯形为等腰梯形,四边形是平行四边形【小问2详解】解:如图:,由(1)可得四边形是平行四边形,故点为的中点,在中,点为的中点,当点在线段上时,若,则点与点重合,四边形是矩形,则与题中梯形为等腰梯形矛盾,故不成立;若,则,为等边三角形,即点与点重合,或点与点重合,

26、当点与点重合时,由可得不成立;当点与点重合时,不存在,故该情况不成立;故不成立;若,则,故,又,过点分别作,垂足分别为,如图:则,又,设,则,在中,在中,即。整理得:,解得(负值舍去),故当点在线段上时,的值为;当点在线段的延长线上时,在中,点为的中点,又,即只存在和两种情况:若,则,如图:又,故,即为等腰直角三角形,且,故,若,过点作,垂足为点,如图:,设,则,在中,在中,即。整理得:,解得(负值舍去),故点在线段的延长线上时,的值为或;综上,的值为或或【点睛】本题考查了平行线的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,直角三角形中线的性质,角平分线的性质,全等三角形的判定和性质,勾股定理,三角形内角和定理,等腰三角形三线合一的性质,解题的关键是学会利用参数借助勾股定理构建方程解决问题,学会用分类讨论的思想思考问题