ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:1.11MB ,
资源ID:245913      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-245913.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(湖北省武汉市部分重点中学2022-2023学年高一下期末联考数学试卷(含答案))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

湖北省武汉市部分重点中学2022-2023学年高一下期末联考数学试卷(含答案)

1、湖北省武汉市部分重点中学2022-2023学年高一下期末联考数学试卷一、选择题:本题共8小题,每小题5分,共40分 1设i为虚数单位,复数z满足,则为( )AB5C2D2从小到大排列的数据1,2,3,x,4,5,6,7,8,y,9,10的下四分位数为( )A3BC8D3已知平面向量,那么在上的投影向量的坐标是( )ABCD4圆台的上、下底面半径分别是1和5,且圆台的母线长为5,则该圆台的体积是( )ABCD5在边长为4的正方形中,动圆Q的半径为1、圆心在线段(含端点)上运动,点P是圆Q上及其内部的动点,则的取值范围是( )ABCD6某校高一(1)班有45人,高一(2)班有30人,按照分层抽样的

2、方法从两个班共抽取10名同学进行答题比赛,相关统计情况如下:高一(1)班同学答对题目的平均数为1,方差为1;高一(2)班同学答对题目的平均数为1.5,方差为0.35,则这10人答对题目的方差为( )A0.61B0.675C0.74D0.87某数学兴趣小组要测量一个球体建筑物的高度,已知点A是球体建筑物与水平地面的接触点(切点),地面上B,C两点与点A在同一条直线上,且在点A的同侧若小明同学在B,C处分别测得球体建筑物的最大仰角为和,且米,则该球体建筑物的高度为( )米ABCD8已知正四棱锥的底面边长为1,侧棱长为,的中点为E,过点E作与垂直的平面,则平面截正四棱锥所得的截面面积为( )ABCD

3、二、选择题:本题共4小题,每小题5分,共20分在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分9已知复数,是方程的三个解,则下列说法正确的是( )A BC,中有一对共轭复数 D10伯努利试验是在同样的条件下重复地、相互独立地进行的一种随机试验,其特点是每次试验只有两种可能结果若连续抛掷一枚质地均匀的硬币n次,记录这n次实验的结果,设事件M“n次实验结果中,既出现正面又出现反面”,事件N“n次实验结果中,最多只出现一次反面”,则下列结论正确的是( )A若,则M与N不互斥B若,则M与N相互独立C若,则M与N互斥D若,则M与N相互独立11已知P是所在平

4、面内一点,则下列说法正确的是( )A若,则P是的重心B若P与C不重合,则P在的高线所在的直线上C若,则P在的延长线上D若且,则的面积是面积的12如图,在四边形中,和是全等三角形,下面有两种折叠方法将四边形折成三棱锥折法;将沿着折起,得到三棱锥,如图1折法:将沿着折起,得到三棱锥,如图2下列说法正确的是( )A按照折法,三棱锥的外接球表面积恒为B按照折法,存在满足C按照折法三棱锥体积的最大值为D按照折法,存在满足平面,且此时与平面所成线面角正弦值为三、填空题:本题共4小题,每小题5分,共20分13在正三角形中,D是的中点,E是的中点,则_14从A,B等5名志愿者中随机选出3名参加志愿服务工作,则

5、A和B至多有一人入选的概率为_15已知向量,满足,则的最大值为_16如图是一座山峰的示意图,山峰大致呈圆锥形,峰底呈圆形,其半径为,峰底A到峰顶S的距离为,B是山坡上一点,且,为了发展当地旅游业,现要建设一条从A到B的环山观光公路若从A出发沿着这条公路到达B的过程中,要求先上坡,后下坡则当公路长度最短时,的取值范围为_四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17(10分)某校为了提高学生对数学学习的兴趣,举办了一场数学趣味知识答题比赛活动,共有1000名学生参加了此次答题活动为了解本次比赛的成绩,从中抽取100名学生的得分(得分均为整数,满分为100分)进行统计

6、所有学生的得分都不低于60分,将这100名学生的得分进行分组,第一组,第二组,第三组,第四组 (单位:分),得到如下的频率分布直方图(1)求图中m的值,并估计此次答题活动学生得分的中位数;(2)根据频率分布直方图,估计此次答题活动得分的平均值若对得分不低于平均值的同学进行奖励,请估计参赛的学生中有多少名学生获奖(以每组中点作为该组数据的代表)18(12分)某电视台举行冲关活动,该活动共设有三关,只有一等奖和二等奖两个奖项,参加活动的选手从第一关开始依次通关,只有通过本关才能冲下一关已知第一关的通过率为0.7,第二关通过率为0.5,第三关的通过率为0.3,三关全部通过可以获得一等奖(奖金为300

7、元),通过前两关就可以获得二等奖(奖金为200元)如果获得二等奖又获得一等奖,则奖金可以累加为500元假设选手是否通过每一关相互独立,现有甲、乙两位选手参加本次活动(1)求甲最后没有得奖的概率;(2)已知甲和乙都已经通过了第一关,求甲和乙最后所得奖金总和为700元的概率19(12分)已知为锐角三角形,且(1)若,求A;(2)已知点D在边上,且,求的取值范围20(12分)已知四棱锥的底面是直角梯形,侧面是正三角形,侧棱长,如图所示(1)证明:平面平面;(2)求直线与平面所成角的余弦值21(12分)在中,角A,B,C所对的边分别是a,b,c,且满足(1)当时,求的值;(2)当,且取得最大值时,求的

8、面积22(12分)如图,在四面体中,是边长为2的等边三角形,为直角三角形,其中D为直角顶点,E、F,G、H分别是线段、上的动点,且四边形为平行四边形(1)当二面角从增加到的过程中,求线段在平面上的投影所扫过的平面区域的面积;(2)设,且是以为底的等腰三角形,当为何值时,多面体的体积恰好为武汉市部分重点中学20222023学年度下学期期末联考高一数学参考答案选择题:1D 2B 3C 4B 5A 6D 7A 8A9BC 10AD 11ABD 12ACD填空题:13 140.7 15 16解答题:17(1),中位数为82.5(2),有520名学生获奖解析:(1)由频率分布直方图知:,解得,设此次竞赛

9、活动学生得分的中位数为,因数据落在内的频率为0.4,落在内的频率为0.8,从而可得,由,得,所以估计此次竞赛活动学生得分的中位数为82.5(5分)(2)由频率分布直方图及(1)知:数据落在,的频率分别为0.1,0.3,0.4,0.2,此次竞赛活动学生得分不低于82的频率为,则,所以估计此次竞赛活动得分的平均值为82,在参赛的1000名学生中估计有520名学生获奖(10分)18(1)0.65(2)0.105解析:(1)甲第一关没通过的概率为,第一关通过且第二关没通过的概率为,故甲没有得奖的概率(5分)(2)记甲和乙通过了第二关且最后获得二等奖为事件E,通过了第二关且最后获得一等奖为事件F,则,甲

10、和乙最后所得奖金总和为700元,甲和乙一人得一等奖,一人得二等奖,若甲得了一等奖,乙得了二等奖的概率为,若乙得了一等奖,甲得了二等奖的概率为,甲和乙最后所得奖金总和为700元的概率(12分)19(1) (2)解析:(1)因为,所以,即,因为是锐角三角形,且又,所以,所以,即,又,所以,即(5分)(2)因为,所以,又,可得,在中,所以,在中,因为为锐角三角形,所以,得,所以,所以,即的取值范围为(12分)20(1)证明见解析 (2)解析:(1)证明:取的中点F,连接、,在直角梯形中,所以,又,所以,即由题意知,且,、平面,所以,平面,又平面,所以平面平面(6分)(2)解:过D作交于H,因为平面平

11、面,平面平面,平面,所以平面设点D到平面的距离为d,则,连接,在中,因为,由余弦定理可知又为直角三角形,于是,设直线与平面所成角为,则,又,所以(12分)21(1)6(2)解析:(1)由,根据正弦定理得:,又由余弦定理得,(6分)(2)由(1)可知,若,则,则,与题设矛盾所以,于是有,当且仅当时,有最大值,此时最大此时,由正弦定理得所以(12分)22(1)(2)解析:(1),A在平面上的投影满足,即A在平面上的投影在线段的中垂线上如图所示,将补成边长为2的正三角形,当二面角为时,即点A在平面上,此时A为M,当二面角为时,此时为中点N,故在平面上的投影所扫过的平面区域为,而,故线段在平面上的投影所扫过的平面区域的面积为(5分)(2),且为等腰三角形,取中点O,由题意得:,满足,根据勾股定理可知,平面,而多面体的体积恰好为,即多面体的体积恰为四面体体积的一半连接、,设点F到平面的距离为,点C到平面的距离为,设点A到平面的距离为,整理得,解得:或又因为,所以