ImageVerifierCode 换一换
格式:DOCX , 页数:30 ,大小:3.09MB ,
资源ID:245679      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-245679.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年山东省菏泽市中考数学试卷(含答案解析))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023年山东省菏泽市中考数学试卷(含答案解析)

1、2023年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分)1. 剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 下列运算正确的是( )A. B. C. D. 3. 一把直尺和一个含角的直角三角板按如图方式放置,若,则( ) A. B. C. D. 4. 实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是( ) A. B. C. D. 5. 如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是( ) A. B. C. D. 6. 一元二次方程的两根为,则的值为( )A. B.

2、C. 3D. 7. 三边长a,b,c满足,则是( )A. 等腰三角形B. 直角三角形C. 锐角三角形D. 等腰直角三角形8. 若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:等都是三倍点”,在的范围内,若二次函数的图象上至少存在一个“三倍点”,则c的取值范围是( )A B. C. D. 二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9. 因式分解:_10. 计算:_11. 用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为_12. 如图,正八边形边长为4,以顶点A为圆心,的长为半径画圆,则阴影部分的面积为_(结

3、果保留) 13. 如图,点E是正方形内的一点,将绕点B按顺时针方向旋转得到若,则_度 14. 如图,在四边形中,点E在线段上运动,点F在线段上,则线段的最小值为_ 三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内)15. 解不等式组:16. 先化简,再求值:,其中x,y满足17. 如图,在中,平分,交于点E;平分,交于点F求证: 18. 无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度,无人机在空中点P处,测得点P距地面上A点80米,点A处俯角为,楼顶C点处的俯角为,已知点A与大楼的距离为70米(点A,B,C,P在同一平面内),求大楼的高度(结果保留根号)

4、19. 某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟)分为如下五组:A组:,B组:,C组:,D组:,E组:其中,A组数据为73,65,74,68,74,70,66,56根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题: (1)A组数据的中位数是_,众数是_;在统计图中B组所对应的扇形圆心角是_度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心

5、率?20. 如图,已知坐标轴上两点,连接,过点B作,交反比例函数在第一象限的图象于点 (1)求反比例函数和直线的表达式;(2)将直线向上平移个单位,得到直线l,求直线l与反比例函数图象交点坐标21. 某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A,B两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株

6、牡丹?22. 如图,为直径,C是圆上一点,D是的中点,弦,垂足为点F (1)求证:;(2)P是上一点,求;(3)在(2)的条件下,当是的平分线时,求的长23. (1)如图1,在矩形中,点,分别在边,上,垂足为点求证: 【问题解决】(2)如图2,在正方形中,点,分别在边,上,延长到点,使,连接求证:【类比迁移】(3)如图3,在菱形中,点,分别在边,上,求的长24. 已知抛物线与x轴交于A,B两点,与y轴交于点,其对称轴为 (1)求抛物线的表达式;(2)如图1,点D是线段上的一动点,连接,将沿直线翻折,得到,当点恰好落在抛物线的对称轴上时,求点D的坐标;(3)如图2,动点P在直线上方的抛物线上,过

7、点P作直线的垂线,分别交直线,线段于点E,F,过点F作轴,垂足为G,求的最大值2023年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,)1. 剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 【答案】A【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可【详解】解:A既是轴对称图形,也是中心对称图形,故A符合题意;B是轴对称图形,不是中心对称图形,故B不符合题意;C不是轴对称图形,也不是中心对称图形,故C不符合题意;D不是轴对称图形,是中心对称图形,故D不符合题意故选:A【点睛】本题主要

8、考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心2. 下列运算正确的是( )A. B. C. D. 【答案】B【解析】【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可【详解】解:A、,故选项错误;B、,故选项正确;C、,故选项错误;D、,故选项错误;故选:B【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握

9、相关乘法公式是解题关键3. 一把直尺和一个含角的直角三角板按如图方式放置,若,则( ) A. B. C. D. 【答案】B【解析】【分析】根据平行线的性质,得出,进而【详解】由图知,故选:B 【点睛】本题考查平行线的性质,特殊角直角三角形,由图形的位置关系推出角之间的数量关系是解题的关键4. 实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是( ) A. B. C. D. 【答案】C【解析】【分析】根据数轴可得,再根据逐项判定即可【详解】由数轴可知,故A选项错误;,故B选项错误;,故C选项正确;,故D选项错误;故选:C【点睛】本题考查实数与数轴,根据进行判断是解题关键5. 如图所示的

10、几何体是由5个大小相同的小正方体组成的,它的主视图是( ) A. B. C. D. 【答案】A【解析】【分析】根据主视图是从正面看到的图形进行求解即可【详解】解:从正面看该几何体,有三列,第一列有2层,第二和第三列都只有一层,如图所示: 故选:A【点睛】本题主要考查了简单几何组合体的三视图,熟知三视图的定义是解题的关键6. 一元二次方程的两根为,则的值为( )A. B. C. 3D. 【答案】C【解析】【分析】先求得,再将变形,代入与的值求解即可【详解】解:一元二次方程的两根为, 故选C【点睛】本题主要考查了一元二次方程根与系数的关系,牢记,是解决本题的关键7. 三边长a,b,c满足,则是(

11、)A. 等腰三角形B. 直角三角形C. 锐角三角形D. 等腰直角三角形【答案】D【解析】【分析】由等式可分别得到关于a、b、c的等式,从而分别计算得到a、b、c的值,再由的关系,可推导得到为直角三角形【详解】解又 ,解得 ,且,为等腰直角三角形,故选:D【点睛】本题考查了非负性和勾股定理逆定理的知识,求解的关键是熟练掌握非负数的和为0,每一个非负数均为0,和勾股定理逆定理8. 若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:等都是三倍点”,在的范围内,若二次函数的图象上至少存在一个“三倍点”,则c的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】由题意可得:三倍点

12、所在的直线为,根据二次函数的图象上至少存在一个“三倍点”转化为和至少有一个交点,求,再根据和时两个函数值大小即可求出【详解】解:由题意可得:三倍点所在的直线为,在的范围内,二次函数的图象上至少存在一个“三倍点”,即在的范围内,和至少有一个交点,令,整理得:,则,解得,当时,解得:,当时,解得:,综上: c的取值范围是,故选:D【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9. 因式分解:_【答案】【解析】【分析】直接提取公因式m,进而分解因式即可【详解】解:m2-4m=m(m-4)

13、故答案为:m(m-4)【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键10. 计算:_【答案】1【解析】【分析】根据先计算绝对值,特殊角的三角函数值,零指数幂,再进行加减计算即可【详解】解:故答案为:1【点睛】本题考查了实数的运算,掌握绝对值、特殊角的三角函数值、零指数幂的运算是解题的关键11. 用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为_【答案】【解析】【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一

14、共有可以组成9个数字,偶数有10、12、20、30、32,是偶数的概率为故答案为:【点睛】本题考查了列表法求概率,注意0不能在最高位12. 如图,正八边形的边长为4,以顶点A为圆心,的长为半径画圆,则阴影部分的面积为_(结果保留) 【答案】【解析】【分析】先利用正八边形求出圆心角的度数,再利用扇形的面积公式求解即可【详解】解:由题意,故答案为:【点睛】本题考查正多边形与圆,扇形的面积等知识,解题的关键是记住扇形的面积,正多边形的每个内角度数为13. 如图,点E是正方形内的一点,将绕点B按顺时针方向旋转得到若,则_度 【答案】80【解析】【分析】先求得和的度数,再利用三角形外角的性质求解即可【详

15、解】解:四边形是正方形,绕点B按顺时针方向旋转得到,故答案为:80【点睛】本题考查了正方形的性质,等腰三角形的性质,旋转图形的性质和三角形外角的性质,利用旋转图形的性质求解是解题的关键14. 如图,在四边形中,点E在线段上运动,点F在线段上,则线段的最小值为_ 【答案】#【解析】【分析】设的中点为O,以为直径画圆,连接,设与的交点为点,证明,可知点F在以为直径的半圆上运动,当点F运动到与的交点时,线段有最小值,据此求解即可【详解】解:设的中点为O,以为直径画圆,连接,设与的交点为点, ,点F在以为直径的半圆上运动,当点F运动到与的交点时,线段有最小值,的最小值为,故答案为:【点睛】本题考查了平

16、行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F的运动轨迹是解题的关键三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内)15. 解不等式组:【答案】【解析】【分析】分别求出各个不等式的解,再取各个解集的公共部分,即可【详解】解:解得:,解得:,不等式组的解集为【点睛】本题主要考查解一元一次不等式组,熟练掌握解不等式组的基本步骤,是解题的关键16. 先化简,再求值:,其中x,y满足【答案】,6【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时将除法变为乘法,约分得到最简结果,将变形整体代入计算即可求解【详解】解:原式;由,得到,则原式【点睛】

17、此题考查分式的化简求值,解题关键熟练掌握分式混合运算的顺序以及整体代入法求解17. 如图,在中,平分,交于点E;平分,交于点F求证: 【答案】证明见解析【解析】【分析】由平行四边形的性质得,由平行线的性质和角平分线的性质得出,可证,即可得出【详解】证明:四边形是平行四边形,平分,平分,在和中,【点睛】本题主要考查平行四边形的性质,平行线的性质及全等三角形的判定与性质,根据题目已知条件熟练运用平行四边形的性质,平行线的性质是解答本题的关键18. 无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度,无人机在空中点P处,测得点P距地面上A点80米,点A处俯角为,楼顶C点处的俯角为,

18、已知点A与大楼的距离为70米(点A,B,C,P在同一平面内),求大楼的高度(结果保留根号) 【答案】大楼的高度为【解析】【分析】如图,过作于,过作于,而,则四边形是矩形,可得,求解,可得,可得【详解】解:如图,过作于,过作于,而, 则四边形是矩形,由题意可得:,大楼的高度为【点睛】本题考查的是矩形的判定与性质,解直角三角形的实际应用,理解仰角与俯角的含义是解本题的关键19. 某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟)分为如下五组:A组:,B组:,C组:,D组:,E组:其中

19、,A组数据为73,65,74,68,74,70,66,56根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题: (1)A组数据的中位数是_,众数是_;在统计图中B组所对应的扇形圆心角是_度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?【答案】(1)69,74,54; (2)见解析 (3)大约有1725名学生达到适宜心率【解析】【分析】(1)根据中位数和众数概念求解,先求出总人数,然后求出B组所占的百分比,最后乘以即可求出在统计图中B组所对应的扇形圆心角;(

20、2)根据样本估计总体的方法求解即可【小问1详解】将A组数据从小到大排列为:56,65,66,68,70,73,74,74,中位数为;74出现的次数最多,众数是74;,在统计图中B组所对应的扇形圆心角是;故答案为:69,74,54;【小问2详解】C组的人数为30,补全学生心率频数分布直方图如下: 【小问3详解】(人),大约有1725名学生达到适宜心率【点睛】本题主要考查调查与统计的相关知识,理解频数分布直方图,扇形统计图的相关信息,掌握运用样本百分比估算总体数量是解题的关键20. 如图,已知坐标轴上两点,连接,过点B作,交反比例函数在第一象限的图象于点 (1)求反比例函数和直线的表达式;(2)将

21、直线向上平移个单位,得到直线l,求直线l与反比例函数图象的交点坐标【答案】(1), (2)或【解析】【分析】(1)如图,过点C作轴于点D,证明,利用相似三角形的性质得到,求出点C的坐标,代入可得反比例函数解析式,设的表达式为,将点代入即可得到直线的表达式;(2)先求得直线l的解析式,联立反比例函数的解析式即可求得交点坐标【小问1详解】如图,过点C作轴于点D, 则,点,将点C代入中,可得,设的表达式为,将点代入可得,解得:,的表达式为;【小问2详解】直线l的解析式为,当两函数相交时,可得,解得,代入反比例函数解析式,得,直线l与反比例函数图象的交点坐标为或【点睛】本题考查了相似三角形的判定与性质

22、,待定系数法求函数的解析式,反比例函数与一次函数的交点问题,一次函数的平移问题,解一元二次方程等知识21. 某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A,B两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?【答案】(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米 (2)

23、最多可以购买1400株牡丹【解析】【分析】(1)设长为x米,面积为y平方米,则宽为米,可以得到y与x的函数关系式,配成顶点式求出函数的最大值即可;(2)设种植牡丹的面积为a平方米,则种植芍药的面积为平方米,由题意列出不等式求得种植牡丹面积的最大值,即可解答【小问1详解】解:设长为x米,面积为y平方米,则宽为米,当时,y有最大值是1200,此时,宽为(米)答:长为60米,宽为20米时,有最大面积,且最大面积为1200平方米【小问2详解】解:设种植牡丹的面积为a平方米,则种植芍药的面积为平方米,由题意可得解得:,即牡丹最多种植700平方米,(株),答:最多可以购买1400株牡丹【点睛】本题考查二次

24、函数应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件22. 如图,为的直径,C是圆上一点,D是的中点,弦,垂足为点F (1)求证:;(2)P是上一点,求;(3)在(2)的条件下,当是的平分线时,求的长【答案】(1)证明见解析; (2) (3)【解析】【分析】(1)由D是的中点得,由垂径定理得,得到,根据同圆中,等弧对等弦即可证明;(2)连接,证明,设的半径为r,利用相似三角形的性质得,由勾股定理求得,得到,即可得到;(3)过点B作交于点G,证明是等腰直角三角形,解直角三角形得到,由得到,解得,即可求解【小问1详解】解:D是的中点,且为的直径,;【小问2详解】解:连接,

25、,为的直径,设的半径为r,则,解得,经检验,是方程的根,;【小问3详解】解:如图,过点B作交于点G, ,是的平分线,【点睛】本题考查了相似三角形的判定与性质,垂径定理,圆周角定理及推论,解直角三角形等知识,熟练掌握以上知识并灵活运用是解题的关键23. (1)如图1,在矩形中,点,分别在边,上,垂足为点求证: 【问题解决】(2)如图2,在正方形中,点,分别在边,上,延长到点,使,连接求证:【类比迁移】(3)如图3,在菱形中,点,分别在边,上,求的长【答案】(1)见解析 (2)见解析 (3)3【解析】【分析】(1)由矩形的性质可得,则,再由,可得,则,根据等角的余角相等得,即可得证;(2)利用“”

26、证明,可得,由,可得,利用“”证明,则,由正方形的性质可得,根据平行线的性质,即可得证;(3)延长到点,使,连接,由菱形的性质可得,则,推出,由全等的性质可得,进而推出是等边三角形,再根据线段的和差关系计算求解即可【详解】(1)证明:四边形是矩形,;(2)证明:四边形是正方形,又,点在的延长线上,;(3)解:如图,延长到点,使,连接, 四边形是菱形,是等边三角形,【点睛】本题是四边形综合题,主要考查了矩形的性质,正方形的性质,菱形的性质,相似三角形的判定,全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握这些知识点并灵活运用是解题的关键24. 已知抛物线与x轴交于A,B两点,与y轴交于点

27、,其对称轴为 (1)求抛物线的表达式;(2)如图1,点D是线段上一动点,连接,将沿直线翻折,得到,当点恰好落在抛物线的对称轴上时,求点D的坐标;(3)如图2,动点P在直线上方的抛物线上,过点P作直线的垂线,分别交直线,线段于点E,F,过点F作轴,垂足为G,求的最大值【答案】(1) (2) (3)【解析】【分析】(1)由题易得c的值,再根据对称轴求出b的值,即可解答;(2)过作x轴的垂线,垂足为H求出A和B的坐标,得到,由,推出,解直角三角形得到的长,即可解答;(3)求得所在直线解析式为,设,设所在直线的解析式为:,得,令,解得,分别表示出和,再对进行化简计算,配方成顶点式即可求解【小问1详解】解:抛物线与y轴交于点,对称轴为,抛物线的解析式为;【小问2详解】如图,过作x轴的垂线,垂足为H, 令,解得:,由翻折可得,对称轴为,在中,;【小问3详解】设所在直线的解析式为,把B、C坐标代入得:,解得,直线与x轴所成夹角为,设,设所在直线的解析式为:,把点P代入得,令,则,解得,点P在直线上方,当时,的最大值为【点睛】本题考查了二次函数综合问题,利用数形结合的思想是解题的关键