ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:174.65KB ,
资源ID:245406      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-245406.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(3.3幂函数 优质课教案教学设计(2022-2023学年人教A版(2019)必修第一册))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

3.3幂函数 优质课教案教学设计(2022-2023学年人教A版(2019)必修第一册)

1、3.3幂函数幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x1,y=x的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际

2、问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入学生阅读课本89页五个实例,求解析式?观察五个解析式有什么共同特征? 问题1:如果张红购买了每千克1元的蔬菜w千克,那么她需要付的钱数p=w元,这里p是w的函数.问题2:如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.问题3:如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数.问题4:如果正方形场地的面积为S,那么正方形的边长a=S,这里a是S的函数.问题5:如果某人t s内骑车行进了1 km,那

3、么他骑车的平均速度v=t1 km/s,这里v是t的函数.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.二、 预习课本,引入新课阅读课本89-90页,思考并完成以下问题1. 幂函数是如何定义的? 2. 幂函数的解析式具有什么特点? 3. 常见幂函数的图象是什么?它具有哪些性质? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。三、 新知探究1幂函数一般地,函数y=x叫做幂函数,其中x是自变量,是常数. 2、 幂函数的性质幂函数y=xy=x2y=x3y=x12y=x-1定义域RRR0,+)(-,0)(0,+)值域R0,+)R0,+)(-,0)(0,+)奇偶性

4、奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上是增函数在0,+)上是增函数,在(-,0上是减函数在R上是增函数在0,+)上是增函数在(0,+)上是减函数,在(-,0)上是减函数公共点(1,1)四、典例分析、举一反三题型一 幂函数的概念例1 函数f(x)=(m2-m-5)xm-1是幂函数,且当x(0,+)时,f(x)是增函数,试确定m的值. 【答案】m=3【解析】根据幂函数的定义,得m2-m-5=1,解得m=3或m=-2. 当m=3时,f(x)=x2在(0,+)上是增函数; 当m=-2时,f(x)=x-3在(0,+)上是减函数,不符合要求.故m=3. 解题技巧:(判断一个函数是否为幂函数)判断

5、一个函数是否为幂函数的依据是该函数是否为y=x(为常数)的形 式,即:(1)系数为1;(2)指数为常数;(3)后面不加任何项.反之,若一个函数为幂 函数,则该函数必具有这种形式.跟踪训练一1.如果幂函数y=(m2-3m+3)xm2-m-2的图象不过原点,求实数m的取值. 【答案】m=1或m=2.【解析】由幂函数的定义得m2-3m+3=1,解得m=1或m=2; 当m=1时,m2-m-2=-2,函数为y=x-2,其图象不过原点,满足条件; 当m=2时,m2-m-2=0,函数为y=x0,其图象不过原点,满足条件. 综上所述,m=1或m=2. 题型二 幂函数的图象与性质例2已知函数y=xa,y=xb,

6、y=xc的图象如图所示,则a,b,c的大小关系为 () A.cba B.abc C.bca D.cab【答案】A【解析】由幂函数的图象特征,知c1,0b1.故cb2b2c,又函数y=2x在R上是增函数,于是abc. 2.对于函数y=x(为常数)而言,其图象有以下特点: (1)恒过点(1,1),且不过第四象限. (2)当x(0,1)时,指数越大,幂函数图象越靠近x轴(简记为“指大图低”);当x(1,+)时,指数越大,幂函数的图象越远离x轴(简记为“指大图高”). (3)由幂函数的图象确定幂指数与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y= y=x,y=x3)来判断.

7、(4)当0时,幂函数的图象在区间(0,+)上都是增函数;当0时,幂函数的图象在区间(0,+)上都是减函数. 跟踪训练二1.如图所示,曲线C1与C2分别是函数y=xm和y=xn在第一象限内的图象,则下列结论正确的是() A.nm0B.mnm0D.mn0 【答案】 A【解析】画出直线y=x0的图象,作出直线x=2,与三个函数图象交于点(2,20),(2,2m),(2,2n).由三个点的位置关系可知,nm13,25121312.(2)幂函数y=x-1在(-,0)上是减函数,又-23-35-1.(3)函数y1=12x在定义域内为减函数,且3412,12121234.又函数y2=x12在0,+)上是增函

8、数,且3412,34121212.34121234.解题技巧:(比较幂函数大小)1.比较幂大小的三种常用方法 2.利用幂函数单调性比较大小时要注意的问题 比较大小的两个实数必须在同一函数的同一个单调区间内,否则无法比较大小. 跟踪训练三1. 已知a=243,b=425,c=2513,则()A.bacB.abc C.bcaD.cab,ac,bac. 五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计3.3幂函数1. 幂函数概念 例1 例2 例3 2. 幂函数的图像性质 七、作业课本91页习题3.3本节主要学习了一类新的函数:幂函数。主要就幂函数的形式定义、图像性质、比较大小三方面学习幂函数.尤其比较大小与前面函数单调性密切相关,因此本节课需要学生熟记定义及图像特征.