ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:159.35KB ,
资源ID:244720      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-244720.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年河北省唐山市路南区中考数学二模试卷(含答案解析))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023年河北省唐山市路南区中考数学二模试卷(含答案解析)

1、2023年河北省唐山市路南区中考数学二模试卷一、选择题(本大题共16小题,共42分。)1. -(+3)=()A. -3B. 3C. -2D. 12. 如图,用圆规比较两条线段的大小,其中正确的是()A. ABACB. AB=ACC. ABACD. 不能确定3. 如图,数轴上的两个点分别表示数a和-2,则a可以是()A. -3B. -1C. 1D. 24. 如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A. 2B. 3C. 4D. 55. 已知a、b都是正整数,若 18=a 2, 8=2 b,则()A. a=bB. abC. a+b=4D. a-b=16. 如图,将线段AB绕点A旋

2、转,下列各点能够落到线段AB上的是()A. 点CB. 点DC. 点ED. 点F7. 由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体()A. 4个B. 8个C. 16个D. 27个8. 能与-(34-65)相加得0的是()A. -34-65B. 65+34C. -65+34D. -34+659. 如图,数轴上的点A、B分别表示数1、-2x+3,则表示数-x+2的点P与线段AB的位置关系是()A. P在线段AB上B. P在线段AB的延长线上C. P在线段BA的延长线上D. 不能确定10. 若x(a-3)y,则a的取值范围是()A. a3C. a3D. a311. 设“”“

3、”“”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“”的个数为()A. 5B. 4C. 3D. 212. 如图,从笔直的公路l旁一点P出发,向西走4km可到达公路l上的A点;从点P出发沿与l垂直的方向走4km可到达点P关于公路l的对称点B点;从点P出发向正北方向走到l上,需要走的路程是()A. 2kmB. 2.5kmC. 4 33kmD. 4 32km13. 对于点P(2a3b,23)和直线l:y=x,下列说法正确的是()A. 若a=b=0,则l经过点PB. 若a=b=2,则l不经过点PC. 若a=3,b=1,则点P在l上方D. 若a=2,b=1,

4、则点P在l下方14. 我国古代孙子算经记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说“每三人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”则下列结论正确的是()A. 设共有x人,根据题意得:x3-2=x-92B. 共有37人C. 设共有车y辆,根据题意得:3(y+2)=2y+9D. 共有15辆车15. 在数据4,5,6,5中去掉n(n0)个数据,若平均数没有发生变化,则n的值是()A. 1或3B. 2或3C. 1或2或3D. 1或216. 如图,已知AB的半径为5,所对的弦AB长为8,点P是AB的中点,将

5、AB绕点A逆时针旋转90后得到AB,三位同学提出了相关结论:嘉嘉:点P到AB的距离为2 淇淇:AP的长为2 3 嘉淇:线段AP扫过的面积为2 5 下列结论正确的是()A. 嘉嘉对,淇淇错B. 淇淇对,嘉淇错C. 嘉嘉错,嘉淇错D. 淇淇错,嘉淇对二、填空题(本大题共3小题,共12.0分)17. 已知b4=b8,则b= _ ,b的倒数为_ 18. 四边形具有不稳定性:如图,将面积为5的矩形“推”成面积为4的平行四边形,则cos的值为_ ;若=30,则平行四边形的面积为_ 19. 如图,在平面直角坐标系xOy中,等边AOB的顶点A在第一象限,点B(3,0),双曲线y=kx(k0,x0)把AOB分成

6、两部分(1)双曲线与边OA,AB分别交于C,D两点,若OC=2,点D的横坐标为_ ;(2)连接CD,则ACD的面积为_ 三、解答题(本大题共7小题,共66.0分。解答应写出文字说明,证明过程或演算步骤)20. (本小题8.0分)老师在黑板上写下了下面的等式,让同学自己出题,并作出答案7+-5=38 请你解答下列两个同学所提出的问题(1)甲同学提出的问题:当代表-2时,求所代表的有理数;(2)乙同学提出的问题:若和所代表的有理数互为相反数,求所代表的有理数21. (本小题9.0分)每年的3月5日,某中学毕业班的每位学生都会收到一封任课老师写给自己的信.九(10)班有48名同学,数学、语文、英语三

7、位任课老师分别给其中的16名学生写信,三位老师用抽签的方式选择写信的同学(每位学生被抽到的可能性相同)(1)亦航特别希望自己能收到数学老师的信,当他看到同桌小越收到了数学老师的信后,心里很着急,认为自己收到数学老师的信的概率变小了,你同意他的想法吗?直接写出他收到数学老师的信的概率;(2)若嘉嘉和淇淇都收到了老师的来信,求她们收到的信来自同一位老师的概率22. (本小题9.0分)如图,约定:上方相邻两整式之和等于这两个整式下方箭头共同指向的整式(1)求整式M、P;(2)将整式P因式分解;(3)P的最小值为_23. (本小题9.0分)如图,将半径为5的扇形OAB,绕点O逆时针旋转得到扇形OCD.

8、OC交AB于点G,OB交CD于点E,AB与CD交于点F(1)A与D的数量关系是:A _ D;(2)在(1)的条件下,求证:AOGDOE;(3)当AD为直径时,以OE为半径的O切CD于点E,求的值及优弧AB的长.24. (本小题9.0分)如图,甲容器已装满水,高为20cm的乙容器装有一定高度的水,由甲容器向乙容器注水,单位时间注水量一定设注水时间为t(分),甲容器水面高度为h1(cm),乙容器水面高度为h2(cm),其中h1-8与t成正比例,且当t=4时,h1=4;h2与t成一次函数关系,部分对应值如下表,当两个容器的水面高度相同时,这个高度称为平衡高度t(分)13h2(cm)48(1)分别写出

9、h1,h2与t的函数关系式,并求未注水时乙容器原有水的高度;(2)求甲、乙两个容器的平衡高度;(3)为使甲容器无水可注时,乙容器恰好注满,需要调整乙容器原有水的高度,求符合条件的乙容器原有水的高度25. (本小题10.0分)如图,在ABC中,ABC=90,AC=5,AB=4.动点P从点C出发,沿CA以每秒3个单位长度的速度向终点A匀速运动过点P作CA的垂线交射线CB于点M,当点M不和点B重合时,作点M关于AB的对称点N.设点P的运动时间为t秒(t0)(1)BC=_;(2)求MN的长(用含t的代数式表示)(3)取PC的中点Q连结MQ、PN,当点M在边BC上,且MQ/PN时,求MN的长连结NQ,当

10、CNQ=A时,直接写出t的值26. (本小题12.0分)如图1,在平面直角坐标系xOy中,已知抛物线G:y=ax2-4ax+1(a0)(1)若抛物线过点A(-1,6),求出抛物线的解析式;(2)当1x5时,y的最小值是-1,求1x5时,y的最大值;(3)已知直线y=-x+1与抛物线y=ax2-4ax+1(a0)存在两个交点,若两交点到x轴的距离相等,求a的值;(4)如图2,作与抛物线G关于x轴对称且对称轴相同的抛物线G,当抛物线G与抛物线G围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围答案和解析1.【答案】A【解析】解:-(+3)=-3,故选:A根据相反

11、数的定义解答即可本题考查了相反数的定义,知道“只有符号不同的两个数叫做互为相反数”是解题的关键2.【答案】C【解析】解:如图用圆规比较两条线段的大小,ABAC,故选:C由比较两条线段长短的方法:重合比较法,即可判断本题考查比较线段的长短,关键是掌握:比较两条线段长短的方法3.【答案】A【解析】解:根据数轴得:a-2,a可以是-3故选:A根据数轴上,右边的数总比左边的大得到a的取值范围,进而得出答案本题考查了数轴,掌握数轴上,右边的数总比左边的大是解题的关键4.【答案】B【解析】解:由题意,AB=AC,BC=6,AD平分BAC,BD=CD=3,故选:B根据等腰三角形的性质即可得到答案本题考查作图

12、-基本作图,解题的关键是理解题意,灵活运用所学知识解决问题5.【答案】D【解析】解: 18=3 2, 8=2 2, 18=a 2, 8=2 b,a,b都是正整数,a=3,b=2,a-b=3-2=1故选:D把 18化为3 2的形式, 8化为2 2的形式,即可求出a,b的值,通过观察即可得出结论本题考查算术平方根,能够根据题意得出a,b的值是解答此题的关键6.【答案】A【解析】解:将线段AB绕点A旋转,ACAB,线段AB经过点C,能够落到线段AB上的是点C,故选:A比较各点与A点组成的线段的长度,线段长度小于AB长度的点能够落到线段AB上本题主要考查了旋转的性质,解题的关键是会运用旋转的性质解决问

13、题,会比较线段的长短7.【答案】B【解析】解:根据以上分析要组成新的正方体至少要222=8个故选B本题要求所得到的正方体最小,则每条棱是由两条小正方体的边组成本题主要考查空间想象能力,解决的关键是要能想象出正方体的形状8.【答案】C【解析】解:-(34-65)=-34+65,与其相加得0,0-(-34+65)=34-65,故选:C本题考查有理数的减法,解本题的关键是掌握去括号和有理数的减法9.【答案】A【解析】解:PA=|-x+2-1|=|-x+1|,PB=|(-x+2)-(-2x+3)|=|x-1|=|-x+1|,AB=|-2x+3-1=2|-x+1|,PA+PB=AB,点P在线段AB上故选

14、:A根据绝对值的几何意义得出:PA=|-x+1|,PB=|-x+1|,AB=2|-x+1|,推出PA+PB=AB,即点P在线段AB上本题考查了数轴和绝对值的几何意义,在数轴上,若PA+PB=AB,则点P在线段AB上10.【答案】A【解析】解:若x(a-3)y,a-30,a23,若a=3,b=1,则点P在l下方,选项C不符合题意;D.当a=2,b=1时,2a3b=2231=43,点P的坐标为(43,23). 当x=43时,y=4323,若a=2,b=1,则点P在l下方,选项D符合题意故选:DA.当b=0时,2a3b没有意义;B.代入a=b=2,可求出点P的坐标,再利用一次函数图象上点的坐标特征,

15、可得出若a=b=2,l经过点P;C.代入a=3,b=1,可求出点P的坐标,再利用一次函数图象上点的坐标特征,可得出若a=3,b=1,则点P在l下方;D.代入a=2,b=1,可求出点P的坐标,再利用一次函数图象上点的坐标特征,可得出若a=2,b=1,则点P在l下方本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键14.【答案】D【解析】解:A、设共有x人,根据题意得:x3+2=x-92,故不符合题意;B、由A选项解得x=39,共39人,故不符合题意;C、设共有车y辆,根据题意得:3(y-2)=2y+9,故不符合题意;D、由C选项解得y=15

16、,共有15辆车,故符合题意;故选:D设有x人,根据车的辆数不变列方程,设车数为y辆,由人数不变列方程,解方程即可判断出答案本题考查了由实际问题抽象出一元一次方程,正确表示人和车的数量是解题关键15.【答案】C【解析】解:(4+5+6+5)4=204=5,在数据4,5,6,5中去掉n(n0)个数据,平均数没有发生变化,去掉的数可能是一个5或两个5或4和6或三个4、5、6n=1或2或3,故选:C先计算这四个数的平均数,再根据在数据4,5,6,5中去掉n(n0)个数据,平均数没有发生变化,即可得到去掉的数据,从而可以得到n的值本题考查算术平均数,解答本题的关键是明确去掉数据后平均数没发生变化,去掉的

17、数据一定和平均数一样或者去掉的几个数据的平均数和原来数据的平均数相同16.【答案】A【解析】解:设AB所在圆的圆心为O,连接OP、OA,点P是AB的中点,OPAB,AM=BM=12AB=4,OM= OA2-AM2=3,PM=5-3=2,点P到AB的距离为2,故嘉嘉对,PA= AM2+PM2= 22+42=2 5,故淇淇错;线段AP扫过的面积=S扇形APP=90(2 5)2360=5,故嘉淇错,故选:A根据垂径定理得出AM=BM=12AB=4,利用勾股定理求得OM,继而即可求得点P到AB的距离为2,故即可判断嘉嘉对;利用勾股定理求得AP的长为2 5,即可判断淇淇错;根据线段AP扫过的面积=扇形A

18、PP的面积求得即可判断嘉淇错本题考查了扇形的面积、垂径定理,勾股定理,明确线段AP扫过的面积=扇形APP的面积是解题的关键17.【答案】212【解析】解:b4=b8,b3=8,即b3=23,b=2,b的倒数为12故答案为:2,12把等式两边同时除以b即可得出b的值,再由倒数的定义即可得出结论本题考查的是倒数,熟知乘积是1的两数互为倒数是解题的关键18.【答案】3552【解析】解:如图,作AHBC于H,BCAB=5,BCAH=4,BCAHBCAB=45,AHAB=45,令AH=4x,AB=5x,BH= AB2-AH2=3x,cos=BHAB=35,当=30时,AH=12AB,平行四边形的面积=B

19、CAH=12BCAB=52故答案为:35,52由矩形、平行四边形的面积得到AHAB=45,即可求出cos的值,由=30得到AH=12AB,即可求出平行四边形的面积本题考查解直角三角形,矩形,平行四边形,关键是由矩形、平行四边形的面积推出AHAB=4519.【答案】3+ 52 154【解析】解:(1)作CEOB于E,AFOB于F,AOB是等边三角形,B(3,0),OF=12OB=32,OA=OB=AB=3,AF=3 32,A(32,3 32),CE/AF,OEOF=CEAF=OCOA=23,OE=23OF=1,CE=23AF= 3,C(1, 3),双曲线y=kx(k0,x0)与边OA,AB分别交

20、于C,D两点,k=1 3= 3,y= 3x,设直线AB的解析式为y=ax+b,32a+b=3 323a+b=0,解得a=- 3b=3 3,直线AB的解析式为y=- 3x+3 3,解y=- 3x+3 3y= 3x得x=3+ 52,故D的横坐标为3+ 52,故答案为:3+ 52;(2)作DGAF于G,则DG/OB,DGBF=ADAB,A(32,3 32),D的横坐标为3+ 52,B(3,0),DG= 52,BF=32,ADAB= 5232= 53,SACD= 53SABC,连接BC,ACOA=13,SABC=13SAOB,SACD= 5313SAOB= 59SAOB= 591233 32= 154

21、故答案为: 154(1)作CEOB于E,AFOB于F,根据等边三角形的性质得到A(32,3 32),进而求得C的坐标,根据待定系数法即可求得函数的解析式,解析式联立构成方程组,解方程组即可求得D的横坐标;(2)根据AC:OA=1:3求得ABC的面积,根据ADAB= 53即可求得ACD的面积本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,反比例函数系数k的几何意义,三角形的面积,正确表示线段长度的比是解题的关键20.【答案】解:(1)当代表-2时,所代表的有理数为x,根据题意得:7x+10=38,解得:x=4,则甲提出的问题:所代表的有理数为4;(2)当和所代表的有理数互为相反数时,分

22、别设为a,-a,根据题意得:7a+5a=38,解得:a=196,则乙提出的问题:所代表的有理数为-196【解析】(1)当代表-2时,所代表的有理数设为x,根据题意列出方程,求出方程的解即可;(2)当和所代表的有理数互为相反数时,分别设为a,-a,根据题意列出方程,求出方程的解即可此题考查了有理数的混合运算,以及解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键21.【答案】解:(1)不同意他的想法,他收到数学老师的信的概率为1648=13;(2)将数学、语文、英语三位任课老师的信分别记作A、B、C,画树状图如下: 共有9种等可能的结果,其中嘉嘉和琪琪收到的信来自同一位老师的有3种结果,所

23、以收到的信来自同一位老师的概率为39=13【解析】(1)根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比22.【答案】解:(1)根据题意得:M=(3x2-4x-20)-3x(x-3)=3x2-4x-20-3x2+9x=5x-20;P=3x2-4x-20+(x+2)2=3x2-4x-20+x2+4x+4=4x2-16;(2)P=4x2-16=4(x2-4)=4(x+2)(x-2);(3)

24、-16【解析】解:(1)(2)见答案;(3)P=4x2-16,x20,当x=0时,P的最小值为-16故答案为:-16(1)根据题意列出关系式,去括号合并即可得到结果;(2)把P提取公因式,再利用平方差公式分解即可;(3)利用非负数的性质求出P的最小值即可此题考查了因式分解-运用公式法,以及整式的加减,熟练掌握运算法则及因式分解的方法是解本题的关键23.【答案】=【解析】解:(1)OA=OB,A=B,由旋转得,B=D,A=D,故答案为:=;(2)证明:由旋转得,AOC=BOD,OA=OD,A=D,AOGDOE(ASA)(3)如图, 以OE为半径的O相切,OECD,OC=OD,COE=DOE,AO

25、GDOE,AOC=DOE,AD为直径,AOC=DOE=COE=60,的值为60,AOB=120,O半径为5,优弧AB=(360-120)5180=203(1)由旋转及等腰三角形可得答案;(2)由旋转得AOC=BOD,再由(1)得出的A=D,即可证明;(3)由三线合一证明出COE=DOE,再由全等得出AOC=DOE,即AOC=DOE=COE=60,再按弧长公式计算即可本题考查了圆的相关知识点的应用,三角形全等及等腰三角形的应用是解题关键24.【答案】解:(1)h1-8与t成正比例,令h1-8=kt,当t=4时,h1=4,代入得4-8=4k,解得:k=-1,h1与t的函数关系式为:h1=-t+8h

26、2与t成一次函数对应关系,设h2=mt+n,当t=1时,h2=4,当t=3时,h2=8,4=m+n8=3m+n,解得:m=2n=2,h2与t的函数关系式:h2=2t+2当t=0时,h2=2,未注水时乙容器原有水的高度为2cm(2)甲、乙两个容器的平衡高度,即h1=h2,故有:-t+8=2t+2求得:t=2此时的平衡高度为h1=h2=6答:两个容器的平衡高度为6cm(3)设乙容器原有水的高度为acm,h2=2t+a当甲容器无水可注时,h1=0,求得:t=8,将t=8,代入20=82+a中,求得:a=4符合条件的乙容器原有水的高度为4cm【解析】(1)由题意得h1-8=kt,从而可求得k=-1,再

27、由h2与t成一次函数对应关系,设h2=mt+n,从而得4=m+n8=3m+n,可解得m=2n=2,则可求解;(2)平衡高度即有h1=h2时,得-t+8=2t+2,从而可求解;(3)设乙容器原有水的高度为acm,h2=2t+a,从而可求解本题主要考查一次函数的应用,解答的关键是理解清楚题意找到相应的等量关系25.【答案】3【解析】解:(1)在RtABC中,ABC=90,AC=5,AB=4,BC= AC2-AB2= 52-42=3故答案为:3(2)当0t35时,MN=2(3-5t)=6-10t当35t53时,MN=2(5t-3)=10t-6(3)当MQ/PN时,CMMN=CQPQ,CQ=PQ,CM

28、=MN,5t=6-10t,解得t=25,此时MN=6-1025=2如图1中,当NQAC时,CNQ=A,此时CN=MN 在RtCPM中,CP=3t,CPMCBA,CPCB=PMAB=CMAC,3t3=PM4=CM5,PM=4t,AM=5t,M,N关于点B对称,BM=BN=5t-3,CN=5t-2(5t-3),5t-2(5t-3)=2(5t-3),t=45,如图2中,当CNA=A时,过点Q作QHBC于H CQ=1.5t,CH=35CQ=910t,QH=45CQ=65t,BN=BM=5t-3,CN=5t-3-3=5t-6,NH=CN+CH=5t-6+910t=5910t-6,tanCNA=HQNH=

29、34,65t5910t-6=34,t=6043,经检验t=6043是分式方程的解,综上所述,满足条件的t的值为45或6043(1)利用勾股定理求解即可(2)分两种情形:当0t35时,当35t53时,分别求解(3)证明CM=MN,由此构建方程,可得结论(4)分两种情形:如图1中,当NQAC时,CNQ=A,此时CN=MN,由此构建方程,即可解决问题.如图2中,当CNA=A时,过点Q作QHBC于H.根据tanCNA=HQNH=34,构建方程,可得结论本题属于三角形综合题,考查了解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考

30、常考题型26.【答案】解:(1)把A(-1,6)代入y=ax2-4ax+1,得a+4a+1=6,解得a=1,抛物线的解析式为y=x2-4x+1(2)y=ax2-4ax+1=a(x-2)2-4a+1,抛物线的对称轴为直线x=2,抛物线的顶点的横坐标在1x5的范围内,抛物线的顶点的纵坐标就是y的最小值-1,-4a+1=-1,解得a=12,抛物线的解析式为y=12x2-2x+1,当1x2时,y随x的增大而减小,当x=1时,y最大=12-2+1=-12;当2x5时,y随x的增大而增大,当x=5时,y最大=252-10+1=72,-1272,y的最大值为72(3)直线y=-x+1及抛物线y=ax2-4a

31、x+1与y轴的交点都是(0,1),直线y=-x+1与抛物线y=ax2-4ax+1的两个交点到x轴的距离都是1,且其中一个交点坐标为(0,1),另一个交点的纵坐标为-1,当y=-1时,由-1=-x+1,得x=2,另一交点坐标为(2,-1),把(2,-1)代入y=ax2-4ax+1得4a-8a+1=-1,解得a=12(4)由题意可知,抛物线G与抛物线G围成的封闭区域是以x轴为对称轴的轴对称图形,该区域内x轴上有三个横、纵坐标均为整数的点,x轴的下方和上方各有四个这样的点,且两两关于x轴对称如图,对于抛物线G,当x=1时,y=-3a+1;当x=2时,y=-4a+1,由题意,得-2-3a+1-1-3-

32、4a+1-2,解得34a1,a的取值范围是34a1【解析】(1)将A(-1,6)代入y=ax2-4ax+1,列方程求出a的值;(2)求出抛物线的对称轴为直线x=2,可知顶点的纵坐标就是y的最小值-1,由此求出抛物线的解析式,再由二次函数的性质求出y的最大值;(3)由直线与抛物线都经过y轴上的定点(0,1),可知直线与抛物线的两个交点到x轴的距离都为1,由另一个交点的纵坐标为-1,求出这个点的坐标并且代入抛物线的解析式即可求出此时a的值;(4)抛物线G与抛物线G围成的封闭区域是以x轴为对称轴的轴对称图形,这样只考虑x轴下方(或上方)的情况即可,即抛物线G当x等于1时的y值不小于-2而小于-1,其顶点的纵坐标不小于-3而小于-2,列不等式组求出a的取值范围此题重点考查二次函数的图象与性质、轴对称的特征以及列不等式组求取值范围等知识和方法,解题的关键是数形结合,确定所需要的数量关系,利用函数解析式列方程或不等式组,此题中等难度,是很好的练习题