ImageVerifierCode 换一换
格式:DOCX , 页数:37 ,大小:1.53MB ,
资源ID:244096      下载积分:50 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-244096.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年山东省泰安市东平县中考三模数学试卷(含答案解析))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023年山东省泰安市东平县中考三模数学试卷(含答案解析)

1、2023年山东省泰安市东平县中考三模数学试题一、单选题(本大题共12个小题,每小题4分,共48分)1. 某市冬季中的一天,中午12时的气温是,经过6小时气温下降了,那么当天18时的气温是( )A. B. C. D. 2. 下列运算正确的是( )A. B. C. D. 3. 开展中小学生课后服务,是促进学生健康成长、帮助家长解决按时接送学生困难重要举措据统计,全国义务教育学校共有7743.1万名学生参加了课后服务将7743.1万用科学记数法表示为( )A. 7.7431106B. 7.7431107C. 0.77431108D. 77.4311064. 在以下绿色食品、回收、节能、节水四个标志中

2、,是轴对称图形的是()A. B. C. D. 5. 如图,是等腰三角形,将一个含的直角三角板如图放置,若,则( ) A. B. C. D. 6. 如图,是甲、乙两位同学五次体育测试成绩的折线统计图,下列说法正确的是( )A. 甲同学成绩的众数是85B. 乙同学成绩的中位数是85C. 甲同学成绩的方差更大D. 乙同学成绩的平均数更大7. 如图,AC是O直径,弦BDAO于E,连接BC,过点O作OFBC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB. cmC. 2.5cmD. cm8. 如图,点O是半圆圆心,BE是半圆直径,点A,D在半圆上,且,过点D作于点C,则阴影部分的面积

3、是()A. B. C. D. 9. 已知二次函数的部分对应值如下表同学们讨论得出了下列结论:抛物线的开口向上;抛物线的对称轴为直线;当时,;是方程的一个根其中正确的结论有( )x0135y70A. 1个B. 2个C. 3个D. 4个10. 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析,结果显示:在吸烟者中患肺癌的比例是,在不吸烟者中患肺癌的比例是,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A. B. C. D. 11. 如图所示,在菱形中

4、,点E,F分别为边上的点,且,连接交于点,连接交于点O,则下列结论:;其中正确结论有( )A. B. C. D. 12. 如图,直角三角形顶点在矩形的对角线上运动,连接,则的最小值为( )A. B. C. D. 二、填空题(本大题共6个小题,每小题4分,共24分,只要求填写最后结果)13. 计算的结果为_14. 如图,点A的坐标为(1,3),点B在x轴上,把OAB沿x轴向右平移到ECD,若四边形ABDC的面积为15,则点C的坐标为 _15. 如图,在O中,AB切O于点A,连接OB交O于点C,过点A作ADOB交O于点D,连接CD若B=50,则OCD的度数等于_16. 在综合实践课上,小聪所在小组

5、要测量一条河的宽度,如图,河岸EFMN,小聪在河岸MN上点A处用测倾器测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30方向,此时,其他同学测得CD10米则河的宽度为_米(结果保留根号).17. 如图,将从1开始连续奇数按如图所示的规律排列,例如,位于第3行第4列的数为23,则位于第25行第11列的数是 18. 四边形是边长为9的正方形纸片,将其沿折叠,使点B落在边上的处,点A对应点为,且,则的长是_ 三、解答题(本大题共7个小题,共78分,写出必要的文字说明、证明过程或推演步骤)19. (1)先化简再求值:,其中(2)解不等式组:20. “端午节”

6、是我国的传统佳节,民间历来有吃“粽子”的习俗我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率21. 如图,在平面直角坐标系中,已知点,反比例函数的图象经过点A,动直线与

7、反比例函数的图象交于点M,与直线交于点N(1)求k的值;(2)求面积的最大值;22. 某超市准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同(1)求甲种牛奶、乙种牛奶的进价分别是每件多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润售价进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?23. 如图,在矩形ABCD中,E是B

8、C上一点,DE平分,F是AB上一点,G是FD的中点(1)求证:;(2)求证:;(3)若,求的长24. 如图,在平面直角坐标系中,抛物线yax2+bx+c(a0)与x轴交于A(2,0)、B(4,0)两点,与y轴交于点C,且OC2OA(1)试求抛物线的解析式;(2)直线ykx+1(k0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由25. 定义:三角形一个内角的平分

9、线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角(1)如图1,E是ABC中A的遥望角,若A,请用含的代数式表示E(2)如图2,四边形ABCD内接于O,四边形ABCD的外角平分线DF交O于点F,连结BF并延长交CD的延长线于点E求证:BEC是ABC中BAC的遥望角(3)如图3,在(2)的条件下,连结AE,AF,若AC是O的直径求AED的度数;若AB8,CD5,求DEF的面积2023年山东省泰安市东平县中考三模数学试题一、单选题(本大题共12个小题,每小题4分,共48分)1. 某市冬季中的一天,中午12时的气温是,经过6小时气温下降了,那么当天18时的气温是( )A.

10、B. C. D. 【答案】B【解析】【分析】根据有理数减法计算即可【详解】解: 中午12时的气温是,经过6小时气温下降了,当天18时的气温是故选B【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键2. 下列运算正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据合并同类项法则、积的乘方法则、多项式乘多项式法则、完全平方公式逐项计算,即可得出答案【详解】解:与不是同类项,不能合并,故A选项计算错误,不合题意;,故B选项计算错误,不合题意;,故C选项计算正确,符合题意;,故D选项计算错误,不合题意;故选C【点睛】本题考查合并同类项、积的乘方、多项式乘多项式、完全平方公式,

11、熟练掌握上述运算法则是解题的关键3. 开展中小学生课后服务,是促进学生健康成长、帮助家长解决按时接送学生困难的重要举措据统计,全国义务教育学校共有7743.1万名学生参加了课后服务将7743.1万用科学记数法表示为( )A. 7.7431106B. 7.7431107C. 0.77431108D. 77.431106【答案】B【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:7743.1万=77431000

12、=7.7431107,故选:B【点睛】本题主要考查科学记数法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数解题关键是正确确定a的值以及n的值4. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D. 【答案】A【解析】【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】A是轴对称图形,故A符合题意;B不是轴对称图形,故B不符合题意;C不是轴对称图形,故C不符合题意;D是轴对称图形,故D不符合题意故选:A【点睛】本题主要考查轴对称图形的知识点确定轴对称图形的关键是寻找

13、对称轴,图形两部分折叠后可重合5. 如图,是等腰三角形,将一个含的直角三角板如图放置,若,则( ) A. B. C. D. 【答案】D【解析】【分析】由平行线的性质推出,根据三角形内角和定理和等腰三角形的性质得到,据此即可求解【详解】解:,故选:D【点睛】本题考查了平行线的性质,三角形内角和定理,等腰三角形的性质,解题的关键是灵活运用所学知识解决问题6. 如图,是甲、乙两位同学五次体育测试成绩的折线统计图,下列说法正确的是( )A. 甲同学成绩的众数是85B. 乙同学成绩的中位数是85C. 甲同学成绩的方差更大D. 乙同学成绩的平均数更大【答案】D【解析】【分析】根据折线图得到甲、乙两组数据,

14、分别计算出两组数据的众数、中位数、方差、平均数即可【详解】解:由折线图可知,甲同学的五次成绩为:85,90,80,85,80,该组数据的众数为:80和85,中位数:85,平均数为:,方差为:;由折线图可知,乙同学的五次成绩为:100,85,90,80,95,该组数据没有众数,中位数为:90,平均数为:,方差为:;综上可知,甲同学成绩的众数是80和85,故A选项错误;乙同学成绩的中位数是90,故B选项错误;甲同学成绩的方差比乙同学的方差小,故C选项错误;乙同学成绩的平均数比甲同学的大,故D选项正确;故选D【点睛】本题考查折线统计图,求一组数据的平均数、方差、中位数、众数等,解题的关键是掌握平均数

15、、方差、中位数、众数的定义及求解方法7. 如图,AC是O的直径,弦BDAO于E,连接BC,过点O作OFBC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB. cmC. 2.5cmD. cm【答案】D【解析】【详解】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可详解:连接OB,AC是O的直径,弦BDAO于E,BD=8cm,AE=2cmRtOEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,OB=3+2=5,EC=5+3=8在RtEBC中,BC=OFBC,OFC=CEB=90C=C,OFCBEC,即

16、,解得:OF= 故选D点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长8. 如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且,过点D作于点C,则阴影部分的面积是()A. B. C. D. 【答案】B【解析】【分析】如图:连接,根据已知条件可得是等边三角形,将阴影部分的面积转化为扇形的面积求解即可【详解】解:如图:连接,是等边三角形,是等边三角形,与与是等底等高的三角形,故选:B【点睛】本题主要考查了扇形面积的计算,判断出AOD与ABD与AOB是等底等高的三角形,且AOB是等边三角形,掌握扇形的面积公式是解题关键9. 已知二次函数部分对应值如下表同学们讨论得出了下列结论:抛物

17、线的开口向上;抛物线的对称轴为直线;当时,;是方程的一个根其中正确的结论有( )x0135y70A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】在对称轴的右侧,随的增大而增大,即可求解;根据表格中数据的对称性即可求解;根据函数的对称性,则时,即可求解;根据表格中数据即可得出结论【详解】解:时,时,函数的对称轴为直线,在对称轴的右侧,随的增大而增大,故抛物线的开口向上,故正确,符合题意;错误,不合题意;当时,根据函数的对称性,则时,故当时,故正确,符合题意;由表格知,当时,即,则是方程的一个根,故正确,符合题意故选:C【点睛】本题考查了二次函数的最值,抛物线与轴的交点,仔细分析

18、表格数据,熟练掌握二次函数的性质是解题的关键10. 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析,结果显示:在吸烟者中患肺癌的比例是,在不吸烟者中患肺癌的比例是,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人,以及在吸烟者中患肺癌的比例是,在不吸烟者中患肺癌的比例是,”分别列出方程组成方程组,即可得出答案【详解】解:由题意可得,故选:B【点

19、睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组11. 如图所示,在菱形中,点E,F分别为边上的点,且,连接交于点,连接交于点O,则下列结论:;其中正确结论有( )A. B. C. D. 【答案】A【解析】【分析】由菱形中,易证得是等边三角形,则可得,由即可证得,可得,由外角性质可得,可判断,由点A,H,C,D四点共圆,可得,可证,可判断,通过证明,可得,可得,可判断,即可求解【详解】解:四边形是菱形,即是等边三角形,同理:是等边三角形,在和中,;,故正确,正确;,点A,H,C,D四点共圆,故正确;,故正确;综上可知,正确的有:,故选A【点睛】本题考查了相

20、似三角形的判定与性质,圆的内接四边形,圆周角定理,菱形的性质,等边三角形的判定与性质以及全等三角形的判定与性质,难度较大,综上综合运用上述知识点,逐步推导认证是解题的关键12. 如图,直角三角形顶点在矩形的对角线上运动,连接,则的最小值为( )A B. C. D. 【答案】D【解析】【分析】过点作于点,连接,由,推出、四点共圆,再证为定值,推出点在射线上运动,当时,的值最小,然后求出与,即可解决问题【详解】解:过点作于点,连接,如图所示:,、四点共圆,点在射线上运动,当时,的值最小,四边形是矩形, , , , ,即 , ,在中,由勾股定理得: ,的最小值 故选:D【点睛】本题考查了矩形的性质、

21、解直角三角形、勾股定理、四点共圆、圆周角定理,熟练掌握矩形的性质,利用垂线段最短解决最值问题是解题的关键第卷(非选择题共102分)二、填空题(本大题共6个小题,每小题4分,共24分,只要求填写最后结果)13. 计算的结果为_【答案】+2【解析】【分析】先根据二次根式的性质化简,再合并同类二次根式即可【详解】解:2+2+2故答案为:+2【点睛】本题主要考查了二次根式的加减运算,熟记二次根式的运算法则是解题的关键14. 如图,点A的坐标为(1,3),点B在x轴上,把OAB沿x轴向右平移到ECD,若四边形ABDC的面积为15,则点C的坐标为 _【答案】(6,3)【解析】【分析】根据平移的性质得出四边

22、形ABDC是平行四边形,从而得A和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标【详解】解:把OAB沿x轴向右平移到ECD,四边形ABDC是平行四边形,ACBD,A和C的纵坐标相同,四边形ABDC的面积为15,点A的坐标为(1,3),3AC15,AC5,C(6,3),故答案为:(6,3)【点睛】本题考查了坐标与图形的变换-平移,平移的性质,平行四边形的性质,求得平移的距离是解题的关键15. 如图,在O中,AB切O于点A,连接OB交O于点C,过点A作ADOB交O于点D,连接CD若B=50,则OCD的度数等于_【答案】20#20度【解析】【分析】连接OA,如图,根据切线的性

23、质得到OAB=90,则利用互余可计算出AOB=40,再利用圆周角定理得到ADC=20,然后根据平行线的性质得到OCD的度数【详解】解:连接OA,如图,AB切O于点A,OAAB,OAB=90,B=50,AOB=90-50=40,ADC=AOB=20,ADOB,OCD=ADC=20故答案为:20【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了圆周角定理16. 在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EFMN,小聪在河岸MN上点A处用测倾器测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30方向,此时,其他同学测得CD10

24、米则河的宽度为_米(结果保留根号).【答案】【解析】【详解】试题分析:如图作BHEF,CKMN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,CKA=90,CAK=45,CAK=ACK=45,AK=CK=x,BK=HC=AKAB=x30,HD=x30+10=x20,在RtBHD中,BHD=90,HBD=30,即解得x=30+10河的宽度为()米故答案为:考点:解直角三角形的应用.17. 如图,将从1开始的连续奇数按如图所示的规律排列,例如,位于第3行第4列的数为23,则位于第25行第11列的数是 【答案】1173【解析】【分析】根据数字的变化关系发现规律第n行,第n列的数据为:2

25、n(n-1)+1,即可得第25行第25列的数据为:1201,再依次减2,到第25行第11列的数据,即可【详解】解:第1行第1列的数是1,这里,1=21(1-1)+1,第2行第2列的数是5,这里,5=22(2-1)+1,第3行第3列的数是13,这里,13=23(3-1)+1,第4行第4列的数是25,这里,25=24(4-1)+1,第n行第n列的数是2n(n-1)+1,第25行第25列的数是225(25-1)+1=5024+1=1201,观察数据的排列,发现排列规律:第奇数行从右往左的数据依次减少2,第25行最右边的数是1201,这里,1201位于第25行第25列,从第25列到第11列需要移动的列

26、数为:25-11=14(列),从右往左的数据每移动1列,数据就减少2,第25行第11列的数是:1201-142=1173故答案为:1173【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题18. 四边形是边长为9的正方形纸片,将其沿折叠,使点B落在边上的处,点A对应点为,且,则的长是_ 【答案】2【解析】【分析】设,由折叠有性质知,推出,求得与的相似比为,于是,然后利用勾股定理列方程即可得到结果【详解】解:设,由折叠有性质知,与的相似比为,即,解得(舍去),即,解得,故答案为:2【点睛】本题考查了图形翻折变换的性质,正方形的性质,勾股定理,相似三角形的

27、判定和性质,熟知图形翻折不变性的性质是解题的关键三、解答题(本大题共7个小题,共78分,写出必要的文字说明、证明过程或推演步骤)19. (1)先化简再求值:,其中(2)解不等式组:【答案】(1),;(2)【解析】【分析】(1)先通分,再利用同分母分式的加减法则化简,然后把化成整体代入化简后的结果,即可求解;(2)分别求出两个不等式的解集,即可求解【详解】解:(1),当即,原式;(2),解不等式得:,解不等式得:,原不等式组的解集为【点睛】本题主要考查了分式的化简求值,解一元一次不等式组,熟练掌握相关运算法则是解题的关键20. “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗我市某食品厂为

28、了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率【答案】(1)600;(2)见解析;(3)3200;(4)【解析】【详解】(1)6010%=600(人) 答:本次参加抽样调查的居民有

29、600人(2)如图,(3)800040%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人(4)如图;共有12种等可能的情况,其中他第二个吃到的恰好是C粽的有3种,P(C粽)= 答:他第二个吃到恰好是C粽的概率是21. 如图,在平面直角坐标系中,已知点,反比例函数的图象经过点A,动直线与反比例函数的图象交于点M,与直线交于点N(1)求k的值;(2)求面积的最大值;【答案】(1); (2)的面积的最大值为【解析】【分析】(1)把点A坐标代入,即可求出k的值;(2)先求出直线的解析式,设,则,则,由三角形的面积公式得出的面积是t的二次函数,即可得出面积的最大值【小问1详解】解:

30、把点代入反比例函数得:,;【小问2详解】解:设直线的解析式为:,根据题意得:,解得:,直线的解析式为:,设,则,的面积,S有最大值,当时,的面积的最大值为【点睛】本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题等知识;掌握待定系数法和三角形面积算法是解题的关键22. 某超市准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同(1)求甲种牛奶、乙种牛奶的进价分别是每件多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲

31、种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润售价进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?【答案】(1)甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)商场购进甲种牛奶67件,乙种牛奶24件;或商场购进甲种牛奶70件,乙种牛奶25件;【解析】【分析】(1)设甲种牛奶进价为x元,则乙种牛奶进价为:元;根据题意列分式方程并求解,即可得到答案;(2)设该商场购进乙种牛奶数量为m件,则该商场购进甲种牛奶数量为件;根据题意,分别列一元一次不等式并求解,即可得到的值,通过计算即可得到答案【详解】(1

32、)设甲种牛奶进价为x元,则乙种牛奶进价为:元根据题意,得: 当时,且是方程的解 甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)设该商场购进乙种牛奶数量为m件,则该商场购进甲种牛奶数量为件两种牛奶的总数不超过95件 销售的总利润(利润售价进价)超过371元商场购进甲种牛奶67件,乙种牛奶24件;或商场购进甲种牛奶70件,乙种牛奶25件【点睛】本题考查了分式方程、一元一次不等式的知识;解题的关键是熟练掌握分式方程、一元一次不等式的性质,从而完成求解23. 如图,在矩形ABCD中,E是BC上的一点,DE平分,F是AB上一点,G是FD的中点(1)求证:;(2)求证:;(3)若,求的长【答案】

33、(1)见解析 (2)见解析 (3)【解析】【分析】(1)过点E作EMDF,垂足为M,四边形ABCD是矩形和DE平分,可得,EDF=EDC,可证DEMDEC(AAS),DEM=DEC,同理可证,进而可证的结论;(2)由(1)得,FDE=CDE,DEF=DCE=90,可证DFEDEC,然后根据相似三角形的性质即可证得结论;(3)由(2)的结论可得,根据题意,可求得,易证GHECHD,然后根据即可求得答案【小问1详解】证明:如图,过点E作EMDF,垂足为M,四边形ABCD是矩形,DE平分,EDF=EDC,DEMDEC(AAS),DEM=DEC,DEM+MEF=DEC+BEF=90MEF=BEF,又,

34、BE=ME,BE=EC【小问2详解】解:由(1)得,FDE=CDE,DEF=DCE=90,DFEDEC,【小问3详解】解:,GF=GD,EG=GD,GED=GDE,GED=CDE,GHECHD,即,解得:【点睛】本题主要考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、直角三角形斜边上的中线、勾股定理等,熟练掌握全等三角形的判定与性质和相似三角形的判定与性质是解题的关键24. 如图,在平面直角坐标系中,抛物线yax2+bx+c(a0)与x轴交于A(2,0)、B(4,0)两点,与y轴交于点C,且OC2OA(1)试求抛物线的解析式;(2)直线ykx+1(k0)与y轴交于点D,与抛物

35、线交于点P,与直线BC交于点M,记m,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由【答案】(1)y=(x+2)(x4)或y=x2+x+4或y=(x1)2+(2)最大值为,此时P(2,4)(3)(,3)或(6,3)【解析】【分析】(1)设抛物线的解析式为y=a(x+2)(x4),根据已知条件求得点C的坐标代入解析式求得a值,即可得抛物线的解析式;(2)作PEx轴于E,交BC于F,易证CMDFMP,根据相似三角形的性质可得

36、m=,设P(n,n2+n+4),则F(n,n+4),用n表示出PF的长,从而得到m、n的二次函数关系式,利用二次函数的性质解决问题即可;(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形,分DP是矩形的边和DP是矩形的对角线两种情况求点N的坐标【详解】解:(1)因为抛物线y=ax2+bx+c经过A(2,0)、B(4,0)两点,设y=a(x+2)(x4),OC=2OA,OA=2,C(0,4),代入抛物线的解析式得到a=,y=(x+2)(x4)或y=x2+x+4或y=(x1)2+(2)如图1中,作PEx轴于E,交BC于FCDPE,CMDFMP,m=,直线y=kx+1(k0)与y轴

37、交于点D,则D(0,1),BC的解析式为y=x+4,设P(n,n2+n+4),则F(n,n+4),PF=n2+n+4(n+4)=(n2)2+2,m=(n2)2+,0,当n=2时,m有最大值,最大值为,此时P(2,4)(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形当DP是矩形的边时,有两种情形,a、如图21中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,直线DP的解析式为y=x+1,可得D(0,1),E(,0),由DOEQOD可得=,OD2=OEOQ,1=OQ,OQ=,Q(,0)根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点

38、N,N(2+,41),即N(,3)b、如图22中,四边形PDNQ是矩形时,直线PD的解析式为y=x+1,PQPD,直线PQ的解析式为y=x+,Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,N(0+6,14),即N(6,3)当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x2)2+42,PD2=13,Q是直角顶点,QD2+QP2=PD2,x2+1+(x2)2+16=13,整理得x22x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,3)【点睛】本题为二次函数压轴题,综合考查了二次函数、待定系数法、最大值问题、

39、相似三角形、矩形等知识点第(3)问涉及存在型问题,有一定的难度在解题过程中,注意数形结合思想、分类讨论思想及方程思想等的应用25. 定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角(1)如图1,E是ABC中A的遥望角,若A,请用含的代数式表示E(2)如图2,四边形ABCD内接于O,四边形ABCD的外角平分线DF交O于点F,连结BF并延长交CD的延长线于点E求证:BEC是ABC中BAC的遥望角(3)如图3,在(2)的条件下,连结AE,AF,若AC是O的直径求AED的度数;若AB8,CD5,求DEF的面积【答案】(1)E;(2)见解析;(3)A

40、ED45;【解析】【分析】(1)由角平分线的定义可得出结论;(2)由圆内接四边形的性质得出FDC+FBC=180,得出FDE=FBC,证得ABF=FBC,证出ACD=DCT,则CE是ABC的外角平分线,可得出结论;(3)连接CF,由条件得出BFC=BAC,则BFC=2BEC,得出BEC=FAD,证明FDEFDA(AAS),由全等三角形的性质得出DE=DA,则AED=DAE,得出ADC=90,则可求出答案;过点A作AGBE于点G,过点F作FMCE于点M,证得EGAADC,得出,求出,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=,求出ED,CE的长,求出DM,由等腰直角三角

41、形的性质求出FM,根据三角形的面积公式可得出答案【详解】解:(1)BE平分ABC,CE平分ACD,EECDEBD(ACDABC),(2)如图1,延长BC到点T,四边形FBCD内接于O,FDC+FBC180,又FDE+FDC180,FDEFBC,DF平分ADE,ADFFDE,ADFABF,ABFFBC,BE是ABC的平分线,ACDBFD,BFD+BCD180,DCT+BCD180,DCTBFD,ACDDCT,CE是ABC的外角平分线,BEC是ABC中BAC的遥望角(3)如图2,连接CF,BEC是ABC中BAC的遥望角,BAC2BEC,BFCBAC,BFC2BEC,BFCBEC+FCE,BECFCE,FCEFAD,BECFAD,又FDEFDA,FDFD,FDEFDA(AAS),DEDA,AEDDAE,AC是O的直径,ADC90,