ImageVerifierCode 换一换
格式:DOC , 页数:27 ,大小:899.63KB ,
资源ID:242885      下载积分:60 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-242885.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年四川省成都市龙泉驿区中考数学二诊试卷(含答案))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023年四川省成都市龙泉驿区中考数学二诊试卷(含答案)

1、2023年四川省成都市龙泉驿区中考数学二诊试卷一、选择题(本大题共8个小题,每小题4分,共32分)1下列数中,最小的是()A1B|1|C0D22下列计算正确的是()A2a+3b5abB5a23a22C5a2b3ab22a2bD2a6a4a3龙泉驿区是成都经济技术开发区、高端制造产业功能区、中法生态园所在地、中德智能网联汽车示范基地,第31届世界大学生夏季运动会承办地,也是国务院正式命名的“中国水蜜桃之乡”.2022年,数据“1545.7亿”用科学记数法表示为()A15.4571010B1.54571011C0.154571012D154571074如图是一副三角尺拼成的图案,则AEB的度数是(

2、)A60B75C105D855在一次体育考试中,六名男生引体向上的成绩如表,对于这组数据()成绩(个次)1011131723人数21111A极差是13B众数是10C中位数是15D平均数是146如图,把圆分成六等分,经过各分点作圆的切线,O的半径是R,它的外切正六边形的边长为()ABRC2RD6R7以绳测井,若将绳三折测之,绳多五尺(绳子测量水井的深度,如果将绳子折成三等份,一份绳长比井深多5尺),绳多一尺现设绳长x尺,井深y尺()ABCD8二次函数yax2+bx+c(a0)的图象如图所示,则下列结论中不正确的是()Aabc0B函数的最大值为ab+cC当x3或1时,y0D4a2b+c0二、填空题

3、(本大题共5个小题,每小题4分,共20分)9计算:x8x2 10若一次函数ykx+2k不经过第二象限,则k的取值范围为 11如图,l1l2l3,BC2cm,3,则AB的长为 12如图所示,OAOB,数轴上点A表示的数是 13如图,在ABC,C90,按以下步骤作图:以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;分别以点E、F为圆心,大于EF的长为半径画弧;作射线AG,交BC边于点D,则ADC的度数为 三、解答题(本大题共5个小题,共48分)14(10分)(1)计算:2sin60+(3.14)0+()1;(2)解方程:15(8分)九年级某班班主任王老师为了解学生的体育锻炼情况,

4、对本班部分学生进行了为一个月的跟踪调查,调查结果分为四类;B:较好;C:一般,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)扇形统计图中D类学生所对应的圆心角是 度,将上面的条形统计图补充完整;(3)若该校九级有学生700名,估计该校学生有多少名学生体育锻炼情况是较好及以上的;(4)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率16(10分)为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,AC与地面MN的夹角分别为22和31,ATMN,大灯照亮

5、地面的宽度BC的长为1.2m(参考数据:sin22,tan22,sin31,tan31)(1)求BT的长(不考虑其他因素);(2)我们设定从发现危险(大灯照到)到电动车完全停下所行驶的距离叫做最小安全距离厂家测试中发现,一般正常人从发现危险到做出刹车动作的反应时间是0.2sm,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离为0.2m)并说明理由17(10分)如图,AB为O直径,AC为弦,且DC为O的切线,过D作DEOA于点E,延长DC交AB的延长线于点H(1)求证:DCDF;(2)若E为OA的中点,DH10,求此时圆的半径的长度18(10分)如图,已知一次函数yx+

6、b分别与x轴和反比例函数交于点B(2,0),A(a,2)(1)求b和k;(2)C为直线AB上一动点,过点C作x轴的平行线,与反比例函数,若四边形OBCD为平行四边形,求点C的坐标;(3)我们把两直角边比为1:2的直角三角形称为“黄金直角三角形”,点P为x轴上一动点,Q为反比例函数,当三角形APQ是以AQ为斜边的“黄金直角三角形”时,求点P的坐标一、填空题(本大题共5个小题,每小题4分,共20分)19不等式组的解集为 20如图,半圆的直径AB10,正方形CDEF的顶点C,一边EF在AB上,则这个正方形的边长等于 21如图,向等腰直角三角形ABC形的游戏板随机发射一枚飞针,已知C90,扇形EAD和

7、扇形FBD的圆心分别为点A、点B,且AC2 22在某函数的给定自变量取值范围内,该函数的最大值与最小值的差叫做该函数在此范围内的界值当txt+1时,一次函数ykx+1(k0),则k的取值范围是 ;当txt+2时,二次函数yx2+2tx3的界值为2,则t 23如图,已知RtABC,ABC90,E边AC上的一点,AD与BE交于点F,则 二、解答题(本大题共3个小题,共30分)24(8分)某网店销售一种儿童玩具,成本为每件30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,日销售量y(件)与销售单价x(元),如图所示(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若在销售

8、过程中每天还要支付其他费用400元,当销售单价为多少元时,该公司日获利最大?最大获利是多少元?25(10分)已知抛物线yax22ax+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,3)(1)求抛物线的解析式;(2)若ACO+BCD45,求点D坐标;(3)如图,直线AD,BD分别与y交于点E,则是否为定值?若是,求出这个定值,请说明理由26(12分)如图,菱形ABCD边长为4,B60,点E为AM延长线上一点,将AE绕点A逆时针旋转60得到线段AF,且EF恰好过点C,其中(1)若k1时,求EF;(2)求证:;(3)若,求k参考答案一、选择题(本大题共8个小题,每小题4分,共32分)1下列数

9、中,最小的是()A1B|1|C0D2【解答】解:|1|1,60|1|7,即最小的数是1故选:A2下列计算正确的是()A2a+3b5abB5a23a22C5a2b3ab22a2bD2a6a4a【解答】解:A2a和3b不能合并;B4a23a62a2,故本选项不符合题意;C3a2b和3ab6不能合并,故本选项不符合题意;D2a6a4a;故选:D3龙泉驿区是成都经济技术开发区、高端制造产业功能区、中法生态园所在地、中德智能网联汽车示范基地,第31届世界大学生夏季运动会承办地,也是国务院正式命名的“中国水蜜桃之乡”.2022年,数据“1545.7亿”用科学记数法表示为()A15.4571010B1.54

10、571011C0.154571012D15457107【解答】解:1545.7亿1545700000001.54571011故选:B4如图是一副三角尺拼成的图案,则AEB的度数是()A60B75C105D85【解答】解:由图可知ACB30,DBC45,AEBDBC+ACB,AEB30+4575故选:B5在一次体育考试中,六名男生引体向上的成绩如表,对于这组数据()成绩(个次)1011131723人数21111A极差是13B众数是10C中位数是15D平均数是14【解答】解:极差为231013,平均数,众数是1012,故选:C6如图,把圆分成六等分,经过各分点作圆的切线,O的半径是R,它的外切正六

11、边形的边长为()ABRC2RD6R【解答】解:如图,AOD3601230,所以,ADODtan30R,所以,外切六边形的边长AB5ADR故选:A7以绳测井,若将绳三折测之,绳多五尺(绳子测量水井的深度,如果将绳子折成三等份,一份绳长比井深多5尺),绳多一尺现设绳长x尺,井深y尺()ABCD【解答】解:设绳长x尺,井深y尺,根据题意,可得:故选:A8二次函数yax2+bx+c(a0)的图象如图所示,则下列结论中不正确的是()Aabc0B函数的最大值为ab+cC当x3或1时,y0D4a2b+c0【解答】解:二次函数的图象开口向下,a0,图象与y轴的交点在x轴上方,c0,抛物线的对称轴为直线x3,b

12、6a0,abc0,A选项不合题意,由图象可知x7时,y取最大值,ab+c为最大值,B选项不合题意,由图象可知y0的一个根为x1,由对称轴为直线x8,另一个根为x3,C选项不合题意,由图象可知x2时,y8,4a2b+c4,不正确的是D选项,故选:D二、填空题(本大题共5个小题,每小题4分,共20分)9计算:x8x2x6【解答】解:原式x82x4故答案为:x610若一次函数ykx+2k不经过第二象限,则k的取值范围为 k2【解答】解:一次函数ykx+2k的图象不经过第二象限,一次函数ykx+2k的图象经过第一、二、四象限,k4且2k0,解得k2故答案为:k211如图,l1l2l3,BC2cm,3,

13、则AB的长为 4cm【解答】解:l1l2l6,BC2cm,AB4cm,故答案为:4cm12如图所示,OAOB,数轴上点A表示的数是 【解答】解:OBOAOB,OA数轴上点A表示的数是:故答案为:13如图,在ABC,C90,按以下步骤作图:以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;分别以点E、F为圆心,大于EF的长为半径画弧;作射线AG,交BC边于点D,则ADC的度数为65【解答】解:解法一:连接EF点E、F是以点A为圆心,分别与AB,AFAE;AEF是等腰三角形;又分别以点E、F为圆心EF的长为半径画弧;AG是线段EF的垂直平分线,AG平分CAB,ABC40CAB50,

14、CAD25;在ADC中,C90,ADC65(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是CAB的平分线,CAB50,CAD25;在ADC中,C90,ADC65(直角三角形中的两个锐角互余);故答案是:65三、解答题(本大题共5个小题,共48分)14(10分)(1)计算:2sin60+(3.14)0+()1;(2)解方程:【解答】解:(1)2sin60+(3.14)3+()12+13+2+63+2;(2),4x(x5)x2,解得:x16,x22,检验:当x4时,x(x2)0,x4是原方程的根,当x2时,x(x2)8,x2是原方程的根,x13,x22是原方程的根15(8

15、分)九年级某班班主任王老师为了解学生的体育锻炼情况,对本班部分学生进行了为一个月的跟踪调查,调查结果分为四类;B:较好;C:一般,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)扇形统计图中D类学生所对应的圆心角是 36度,将上面的条形统计图补充完整;(3)若该校九级有学生700名,估计该校学生有多少名学生体育锻炼情况是较好及以上的;(4)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率【解答】解:(1)(1+2)15%20(名),所以李老师一共调查了20名同学;(

16、2)C类人数为25%207(人),所以C类的女生人数为526(名),所以D类人数为2031055(名),其中男生人数为218(名),所以扇形统计图中D类学生所对应的圆心角为36036,条形统计图补充为:故答案为:36;(3)700(15%+50%)455(名),估计该校学生有455名学生体育锻炼情况是较好及以上的;(4)画树状图为:共有6种等可能的结果数,其中一位男同学和一位女同学的结果数为6,所以所选两位同学恰好是一位男同学和一位女同学的概率16(10分)为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,AC与地面MN的夹角分别为22和31,ATMN,大灯照亮地面的宽度BC的

17、长为1.2m(参考数据:sin22,tan22,sin31,tan31)(1)求BT的长(不考虑其他因素);(2)我们设定从发现危险(大灯照到)到电动车完全停下所行驶的距离叫做最小安全距离厂家测试中发现,一般正常人从发现危险到做出刹车动作的反应时间是0.2sm,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离为0.2m)并说明理由【解答】解:(1)在RtACT中,tanACT,CT,同理,BT,又ACT31,ABT22,1.2,即AT,解得AT1.44,BT2.6(m),答:BT的长约为3.2m;(2)20km/hm/s,刹车停止后,车轮前沿到障碍物的距离为:3.30

18、.20,符合要求17(10分)如图,AB为O直径,AC为弦,且DC为O的切线,过D作DEOA于点E,延长DC交AB的延长线于点H(1)求证:DCDF;(2)若E为OA的中点,DH10,求此时圆的半径的长度【解答】(1)证明:如图,连接OC,DC为O的切线,DCOC,OCD90,OCA+DCF90,DEOA,AED90,OAC+AFE90,OAOC,OACOCA,DCFAFE,AFECFD,DCFCFD,DCDF;(2)解:设OEx,E为OA的中点,OA2OE2x,OAOC,OC8x,sinD,DH10,HE6,由勾股定理得,DE,HCODEH90,HH,HCOHED,解得x,半径为2x18(1

19、0分)如图,已知一次函数yx+b分别与x轴和反比例函数交于点B(2,0),A(a,2)(1)求b和k;(2)C为直线AB上一动点,过点C作x轴的平行线,与反比例函数,若四边形OBCD为平行四边形,求点C的坐标;(3)我们把两直角边比为1:2的直角三角形称为“黄金直角三角形”,点P为x轴上一动点,Q为反比例函数,当三角形APQ是以AQ为斜边的“黄金直角三角形”时,求点P的坐标【解答】解:(1)将点B的坐标代入一次函数表达式得:02+b,则b3,则一次函数的表达式为:yx2;将点A的坐标代入上式得:2a6,则a1,即点A(4,8),将点A的坐标代入反比例函数表达式得:k428,即反比例函数的表达式

20、为:y,即b2,k3;(2)设点C(m,m2),四边形OBCD为平行四边形,CDOB2,点C,则点D(m2,m2),将点D的坐标代入反比例函数表达式得:(m2)68,解得:m2+6或28,故点C的坐标为:(2+3,2);(3)设点Q(s,t),分别过点A、Q作x轴的垂线、N,AQ是直角三角形的斜边,则APQ90,APM+QPN90,APM+MAP90,QPNMAP,AMPPNQ90,AMPPNQ,直角边比为1:2,则上述两个三角形的相似比为,即,即2或,解得:x或7,即点P的坐标为:(,0)或(2一、填空题(本大题共5个小题,每小题4分,共20分)19不等式组的解集为 5x1【解答】解:解不等

21、式2x1x+7得:x1,解不等式得:x5,则不等式组的解集为5x6,故答案为:5x120如图,半圆的直径AB10,正方形CDEF的顶点C,一边EF在AB上,则这个正方形的边长等于 20【解答】解:如图,找到半圆的圆心O,根据题意得OD5,设OEx,则EFDE2x,由勾股定理得(2x)2+x242,解得x27S正方形ABCD4x26520故答案为:2021如图,向等腰直角三角形ABC形的游戏板随机发射一枚飞针,已知C90,扇形EAD和扇形FBD的圆心分别为点A、点B,且AC21【解答】解:因为BCAC,C90,所以AB2,因为点D为AB的中点,所以ADBD,所以阴影部分的面积三角形ABC的面积扇

22、形EAD的面积扇形FBD的面积822,则击中图中阴影部分区域的概率为:7故答案为:122在某函数的给定自变量取值范围内,该函数的最大值与最小值的差叫做该函数在此范围内的界值当txt+1时,一次函数ykx+1(k0),则k的取值范围是 k3;当txt+2时,二次函数yx2+2tx3的界值为2,则t1+或【解答】解:当txt+1时,一次函数ykx+1(k3)的界值大于3,y最大值y最小值3,k4,y随x的增大而增大,xt时,y最小值tk+1,xt+1时,y最大值k(t+8)+1,k(t+1)+8(tk+1)3,k7;yx2+2tx7(x+t)23t6,当xt时,y最小值3t2,当xt时,y6t23

23、,当xt+6时2+8t+5,当ttt+2时,t0,此时,当xt时,当xa+6时,y最大值3t2+3t+1,y最小值3t43,3t8+8t+1(4t23)5,解得t(舍去);当ttt+4时,1t0,当t0时,y最大值7t2+8t+3,y最小值3t2,6t2+8t+6(t23)4,解得t1+(舍);当6t时,y最大值8t23,y最小值2t2,3t33(t27)2,解得t(舍);当tt+4t时,t1,y最小值3t6+8t+1,y最大值5t23,2t23(5t2+8t+5)2,解得t;综上所述,t的值为1+故答案为:k5;1+23如图,已知RtABC,ABC90,E边AC上的一点,AD与BE交于点F,

24、则【解答】解:延长ED到G,使DGED,CG,过E作EHBC于HD为BC中点,EDDG,四边形BGCE是平行四边形,BECG,DCMDBF,CMDBFD,CDBD,CDMBDF(AAS),CMBF,ABD90EHD,ADBCDE,ABDEHD,设BDmCD,HDn,CHmn,ECHACB,EHC90ABC,ECHACB,m3n,BD5n,3,EFCM,EAFCAM,故答案为:二、解答题(本大题共3个小题,共30分)24(8分)某网店销售一种儿童玩具,成本为每件30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,日销售量y(件)与销售单价x(元),如图所示(1)求y与x之间的函数关系

25、式,并写出自变量x的取值范围;(2)若在销售过程中每天还要支付其他费用400元,当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【解答】解:(1)设y与x之间的函数关系式ykx+b,把(30,140),100)分别代入ykx+b,得,解得,y2x+200(30x60);(2)设该公司日获利润为W元,W(x30)(6x+200)4002x2+260x64004(x65)2+2050(或),a4,抛物线开口向下,当x65时,W随x的增大而增大,30x60,当x60时,W有最大值,答:当销售单价为60元时,该公司日获利最大25(10分)已知抛物线yax22ax+c与x轴交于点A(1,0)和

26、点B,与y轴交于点C(0,3)(1)求抛物线的解析式;(2)若ACO+BCD45,求点D坐标;(3)如图,直线AD,BD分别与y交于点E,则是否为定值?若是,求出这个定值,请说明理由【解答】解:(1)抛物线yax22ax+c与x轴交于点A(4,0)和点B,3),解得,yx2+3x+3;(2)过点C作CMy轴交抛物线于点M,过点M作MNCM交CD于点N,OCM90,CMN90,MCN+OCD90,点C(0,7),M(2,3),在yx2+2x+3中,令y2,B(3,0),OBOC7,BOC为等腰直角三角形,OCB45,ACO+BCD45,ACO+BCD+OCB90,OCA+OCD90,MCNOCA

27、,CMNCOA90,MNCOAC,即,MN,N(3,),设直线CN的解析式为ysx+t,解得,直线CN的解析式为yx+7,联立yx2+2x+2得,解得(舍去)或,点D坐标为(,);(3)是为定值设D(m,m6+2m+3),设直线AD的解析式为ykx+b,解得,直线AD的解析式为y(m6)x+3m,E的坐标为(0,4m),同理可得F的坐标为(0,3m+3),FC3m+363m,EC37+mm,326(12分)如图,菱形ABCD边长为4,B60,点E为AM延长线上一点,将AE绕点A逆时针旋转60得到线段AF,且EF恰好过点C,其中(1)若k1时,求EF;(2)求证:;(3)若,求k【解答】(1)解

28、:如图1中,连接AC四边形ABCD是菱形,ABBC,B60,ABC是等边三角形,BAC60,ACAB4,k5,BMCM,BAECAE30,EAEF,EAF60,AEF是等边三角形,CAECAF30,ACEC,ECCF,ECACtan30,EF;(2)证明:如图2中,连接AC,使得FCFKBACEAF60,BAMCAN,ABAC,BACN60,ABMACN(ASA),BMCN,FCFK,F60,FCK是等边三角形,CKCF,CKNE60,ABCD,ABC60,BCD18060120MAN60,MAN+MCN180,AMC+ANC180,CME+AMC180,CMECNK,CMECNK,CKCF,CNBM,;(3)解:如图3中,连接AC,过点A作AJEF于点J,MQEF于点Q,设AEAFEFm,ABAC2m,AJEF,EJJFm,AJm,JCm,CFm,ECm,ABAC,AEAF,BAECAF(SAS),BECFm,AECABC60,A,B,E,C四点共圆,AEBACB60,AEBAEC,MPEB,MQEC,MPMQ,k