ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:1.67MB ,
资源ID:241997      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-241997.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023浙江省杭州市滨江区中考一模数学试卷(含答案解析))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023浙江省杭州市滨江区中考一模数学试卷(含答案解析)

1、2023浙江省杭州市滨江区中考一模数学试卷一、选择题:本大题有10个小题,每小题3分,共30分 1. 在下列四个实数中,最大的数是( )A. B. C. 0D. 2. 杭州亚运场馆是人性化的无障碍环境,按照“国内领先、国际一流”标准打造,场馆设计凸显文化特色,有34000块旋转百叶数据34000用科学记数法可表示为( )A. B. C. D. 3. 下列所述图形中,既是轴对称图形也是中心对称图形是( )A. 矩形B. 六边形C. 平行四边形D. 等腰三角形4. 若,则下列不等式一定成立的是( )A. B. C. D. 5. 如图,在平行四边形ABCD中,点E在BC上,则的度数是( )A. B.

2、 C. D. 6. 一批学生夏令营住某校学生宿舍楼,如果一间房住6人,那么有6人无房可住;如果一间房住8人,那么就空出一间房,若设该校学生宿舍楼有房x间,则列出关于x的一元一次方程正确的是( )A. B. C. D. 7. 如图,小聪在一幢楼的楼顶点处,以的俯角看到一盏路灯的底部点,小辉在这幢楼的点处,以的俯角看到这盏路灯的底部点路灯到楼的距离米,点在同一直线上已知,则小聪和小辉所在测量位置之间的距离约为( )A 4.5米B. 9.1米C. 10.5米D. 14.7米8. 把平移得到,点A,B,C的对应点分别是D,E,F,则下列结论不一定正确的是( )A. B. C. D. BE的长为平移距离

3、9. 如图,在矩形中,点E在边上,沿折叠得到,且点B,F,E三点共线,若,则( )A. B. 5C. D. 10. 如图,在中,点D为中点,于点E,交于点F,若,则( )A. B. C. D. 1二、填空题:本大题有6个小题,每小题4分,共24分11 计算:_12. 如图,转盘被分成5个面积相等的扇形,任意转动这个转盘1次,当转盘停止转动时,指针落在阴影区域的概率为_13. 化简的结果为_14. 如图,用40m长的篱笆围成一边靠墙(墙足够长)的矩形菜园,若,则的取值范围为_15. 如图,在圆内接正十边形中,是正十边形的一条边,平分交于点,若的半径为2,则_16. 二次函数,若函数的图象的顶点在

4、函数的图象上,函数的图象的顶点在函数的图象上,且,则与所满足的关系式为_三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤17. 以下是小明化简整式的解答过程:解 小明的解答过程是否有错误?如果有错误,请写出正确的解答过程18. 某学校计划在七年级开设“篮球、“足球”、“羽毛球”、“健美操”四门运动课程,要求每人必须参加,并且只能选择其中一项运动为了解学生对这四门运动课程的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出)请你根据以上信息解决下列问题:(1)求出参加问卷调查学生人数(2)

5、若该校七年级一共有名学生,试估计选择“羽毛球”课程学生有多少名?19. 如图,在中,上的高线与上的高线相交于点F(1)求证:(2)若,求的长20. 直线(,b为常数,且)与双曲线(k为常数,且)相交于两点,O为坐标原点(1)求上述一次函数与反比例函数的表达式(2)当时,请直接写出x的取值范围(3)求的面积21. 如图,在平行四边形中,垂直平分分别交于点E,O,F(1)判断四边形是何种特殊四边形?并说明理由(2)求四边形的面积22. 二次函数与x轴交于两点(1)当时,求m的值(2)当时,求证:点在该抛物线上,且,试比较与的大小23. 如图1,为的直径,于点,与交于点(1)求证:(2)若,求的长(

6、3)连结,如图2,求证:2023浙江省杭州市滨江区中考一模数学试卷一、选择题:本大题有10个小题,每小题3分,共30分1. 在下列四个实数中,最大的数是( )A. B. C. 0D. 【答案】D【解析】【分析】根据实数的大小比较进行判断即可【详解】解:正数都大于0,0大于一切负数,最大的数是:,故选:D【点睛】本题考查实数的大小比较的方法,熟练掌握正数大于0,0大于负数,两个负数的绝对值大的反而小是解题的关键2. 杭州亚运场馆是人性化的无障碍环境,按照“国内领先、国际一流”标准打造,场馆设计凸显文化特色,有34000块旋转百叶数据34000用科学记数法可表示为( )A. B. C. D. 【答

7、案】B【解析】【分析】科学记数法的表现形式为的形式,其中,为整数,确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,是非负数,当原数绝对值小于1时,是负数【详解】解:根据题意可得:,故选:B【点睛】本题考查了科学记数法的表示方法,科学记数法的表现形式为的形式,其中,为整数,表示时关键是要正确确定的值以及的值3. 下列所述图形中,既是轴对称图形也是中心对称图形的是( )A. 矩形B. 六边形C. 平行四边形D. 等腰三角形【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】解:A矩形既是轴对称图形也是中心对

8、称图形,故选项符合题意;B正六边形既是轴对称图形也是中心对称图形,故选项不符合题意;C平行四边形不是轴对称图形但是中心对称图形,故选项不符合题意;D等腰三角形是轴对称图形但不是中心对称图形,故选项不符合题意故选:A【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合4. 若,则下列不等式一定成立的是( )A. B. C. D. 【答案】D【解析】【分析】根据不等式基本性质:(1)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;(2)不

9、等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(3)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;进行分析即可得到答案【详解】解:A.若,则,原变形不成立,故此选项不符合题意;B.若,则,原变形成立,故此选项不符合题意;C.若,则,原变形不一定成立,故此选项不符合题意;D.若,则,原变形不一定成立,当时,原变形不成立,故此选项符合题意;故选:D【点睛】本题主要考查了不等式的基本性质,关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变5. 如图,在平行四边形ABCD中,点E在BC上,则的度数是( )A. B. C. D. 【答案】B【解析】【分析】根据

10、平行四边形的性质求出,再根据等腰三角形的性质求出,进而求出,最后根据三角形内角和定理得出答案【详解】四边形是平行四边形,在中,故选:B【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质,三角形内角和定理等,确定各角之间的数量关系是解题的关键6. 一批学生夏令营住某校学生宿舍楼,如果一间房住6人,那么有6人无房可住;如果一间房住8人,那么就空出一间房,若设该校学生宿舍楼有房x间,则列出关于x的一元一次方程正确的是( )A. B. C. D. 【答案】C【解析】【分析】直接利用住宿人数不变进而得出方程即可【详解】解:设该校学生宿舍楼有房x间,则可列方程:,故选:C【点睛】此题主要考查了由实际

11、问题抽象出的一元一次方程,正确表示出总住店人数是解题的关键7. 如图,小聪在一幢楼的楼顶点处,以的俯角看到一盏路灯的底部点,小辉在这幢楼的点处,以的俯角看到这盏路灯的底部点路灯到楼的距离米,点在同一直线上已知,则小聪和小辉所在测量位置之间的距离约为( )A. 4.5米B. 9.1米C. 10.5米D. 14.7米【答案】C【解析】【分析】在中,即,在,即,分别求出的长,即可得到的长【详解】解:根据题意可得:,在中,即,米,在,即,米,米,小聪和小辉所在测量位置之间的距离约为10.5米,故选:C【点睛】本题考查了解直角三角形的应用,熟练掌握相关三角函数是解题的关键8. 把平移得到,点A,B,C的

12、对应点分别是D,E,F,则下列结论不一定正确的是( )A. B. C. D. BE的长为平移距离【答案】A【解析】【分析】根据平移的性质进行解答即可【详解】解:根据平移的性质可知,平移前后对应边相等,对应角相等,对应点的连线为平移的距离,因此把平移得到,点A,B,C的对应点分别是D,E,F,则,BE的长为平移距离一定正确,当A、B、D、E在同一直线上时,不成立,故A符合题意【点睛】本题主要考查了平移的性质,解题的关键是熟练掌握平移的性质,平移前后对应边相等,对应角相等,对应点的连线段的长度为平移的距离9. 如图,在矩形中,点E在边上,沿折叠得到,且点B,F,E三点共线,若,则( )A. B.

13、5C. D. 【答案】D【解析】【分析】由四边形是矩形得到,由沿折叠得到,得到,证明,得到,设,则,由勾股定理得,则,解得,即可得到答案【详解】解:四边形是矩形,沿折叠得到,设,则,由勾股定理得,解得,即故选:D【点睛】此题考查了矩形的性质、勾股定理、全等三角形的判定和性质、折叠的性质等知识, 数形结合和准确计算是解题的关键10. 如图,在中,点D为中点,于点E,交于点F,若,则( )A. B. C. D. 1【答案】B【解析】【分析】过点D作交于点G,由点D为中点,得到,则,由勾股定理得到,由于点E,则,再证,得到,求得,由得到,进一步得到,进一步即可得到的长度【详解】解:过点D作交于点G,

14、点D中点, , ,于点E,解得,故选:B【点睛】此题考查了平行线分线段成比例定理、勾股定理、相似三角形的判定和性质等知识,数形结合和准确计算是解题的关键二、填空题:本大题有6个小题,每小题4分,共24分11. 计算:_【答案】3【解析】【分析】求数a的立方根,也就是求一个数x,使得x3=a,则x就是a的一个立方根,根据立方根的定义计算可得【详解】解: 33=27,故答案为3【点睛】此题考查了求一个数的立方根,熟记立方根定义是解题的关键12. 如图,转盘被分成5个面积相等的扇形,任意转动这个转盘1次,当转盘停止转动时,指针落在阴影区域的概率为_【答案】#0.4【解析】【分析】首先确定在图中阴影区

15、域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率【详解】解:转盘被分成5个面积相等的扇形,其中阴影部分占2份,指针落在阴影区域的概率为,故答案为:【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A),然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率13. 化简的结果为_【答案】x【解析】【分析】先把两分数化为同分母的分数,再把分母不变,分子相加减即可【详解】,故答案为x14. 如图,用40m长的篱笆围成一边靠墙(墙足够长)的矩形菜园,若,则的取值范围为_【答案】【解析】【分析】根据题意可得,从而表

16、示出,再由即可得到,解不等式组即可得到答案详解】解:根据题意可得:,解得:,的取值范围为:,故答案为:【点睛】本题主要考查了不等式组的应用,根据题意列出不等式组是解题的关键15. 如图,在圆内接正十边形中,是正十边形的一条边,平分交于点,若的半径为2,则_【答案】【解析】【分析】根据角平分线的性质以及内接正多边形的性质,可得到,再通过证明,得到,即即可求出答案【详解】解:根据题意得:,平分交于点,即,解得:,故答案:【点睛】本题主要考查了正多边形和圆,等腰三角形的判定,相似三角形的性质和判定的应用,解此题的关键是得出关于的比例式16. 二次函数,若函数的图象的顶点在函数的图象上,函数的图象的顶

17、点在函数的图象上,且,则与所满足的关系式为_【答案】【解析】【分析】先根据顶点坐标公式得到两个函数的顶点坐标,再分别代入对应的解析式表示出来,最后通过化简,根据,即可得到答案【详解】解:根据题意可得:二次函数的顶点坐标为:,二次函数的顶点坐标为:,函数的图象的顶点在函数的图象上,函数的图象的顶点在函数的图象上,整理得:,得:,故答案为:【点睛】本题主要考查了二次函数图象的性质,熟练掌握二次函数的顶点坐标公式,是解题的关键三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤17. 以下是小明化简整式的解答过程:解 小明的解答过程是否有错误?如果有错误,请写出正确的解答过程

18、【答案】见解析【解析】【分析】观察小明的解答过程,发现去括号出现了错误,改正即可得到答案【详解】解:小明的解答过程有误,正确的解答为:【点睛】本题考查了整式的化简,熟练掌握去括号要注意符号的变化是解题的关键18. 某学校计划在七年级开设“篮球、“足球”、“羽毛球”、“健美操”四门运动课程,要求每人必须参加,并且只能选择其中一项运动为了解学生对这四门运动课程的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出)请你根据以上信息解决下列问题:(1)求出参加问卷调查的学生人数(2)若该校七年级一共有名学生,试估计选择“羽

19、毛球”课程的学生有多少名?【答案】(1)名 (2)名【解析】【分析】(1)用选择“篮球”的人数除以其人数占比即可得到答案;(2)用乘以样本中选择“羽毛球”的人数占比即可得到答案【小问1详解】解:名,参加问卷调查的学生人数为名;【小问2详解】解:名,估计选择“羽毛球”课程的学生有名【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键19. 如图,在中,上的高线与上的高线相交于点F(1)求证:(2)若,求的长【答案】(1)见解析 (2)【解析】【分析】(1)由上的高线与上的高线相交于点F得,由同角的余角相等得到,再证明,则,又因为,即可证明;(2)由等

20、腰三角形的性质得到,则,由即可得到答案小问1详解】证明:上的高线与上的高线相交于点F,;【小问2详解】,是等腰三角形,【点睛】此题考查了全等三角形的判定和性质、等腰三角形的判定和性质等知识,证明是解题的关键20. 直线(,b为常数,且)与双曲线(k为常数,且)相交于两点,O为坐标原点(1)求上述一次函数与反比例函数的表达式(2)当时,请直接写出x的取值范围(3)求的面积【答案】(1), (2)或 (3)6【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,再求出点B的纵坐标,利用待定系数法求出一次函数解析式即可;(2)根据函数图像即可得到x的取值范围;(3)根据梯形和三角形面积之间的关

21、系得到答案即可【小问1详解】把代入得,解得,,把点代入得到,把代入得,解得,【小问2详解】由图像可知,当时,x的取值范围是或;【小问3详解】,即的面积是6【点睛】此题考查了一次函数和反比例函数综合题,熟练掌握待定系数法和数形结合是解题的关键21. 如图,在平行四边形中,垂直平分分别交于点E,O,F(1)判断四边形是何种特殊四边形?并说明理由(2)求四边形的面积【答案】(1)四边形是菱形,理由见解析 (2)6【解析】【分析】(1)先证明,则,又由得到四边形是平行四边形,由垂直平分即可证明四边形是菱形;(2)先证明是直角三角形,则,则,得到,得到,则,即可得到菱形的面积【小问1详解】四边形是菱形,

22、理由如下:四边形是平行四边形,垂直平分,四边形是平行四边形,垂直平分,四边形是菱形;【小问2详解】解:,是直角三角形,垂直平分,菱形的面积是【点睛】此题考查了菱形的判定和性质、平行线分线段成比例定理、全等三角形的判定和性质、勾股定理逆定理等知识,数形结合和准确计算是解题的关键22. 二次函数与x轴交于两点(1)当时,求m的值(2)当时,求证:点在该抛物线上,且,试比较与的大小【答案】(1); (2)见解析;(2)【解析】【分析】(1)当时,把代入求得,得到,把代入得,解方程即可得到答案;(2)把代入得,由得到,进一步得,则,由解方程求出m,即可判断由得,则,把代入得,则,由,得到,,进一步即可

23、得到答案【小问1详解】解:当时,把代入得,解得,把代入得,解得或;二次函数与x轴交于两点,;【小问2详解】把代入得,由得到,则,(舍去), 由得,把代入得,,,【点睛】此题考查了二次函数的性质、解一元二次方程、比较函数值大小等知识, 读懂题意并准确计算是解题的关键23. 如图1,为的直径,于点,与交于点(1)求证:(2)若,求的长(3)连结,如图2,求证:【答案】(1)见解析 (2)的长为 (3)见解析【解析】【分析】(1)由为的直径,于点得,又由,得到,从而得到,即,即可得证;(2)连接,由(1)得:,从而得到,则,设,则,在中,即,即可得到答案;(3)连接交于,则,通过证明,得到,再由等腰三角形的性质和三角形外角的性质,可得到,最后由,即可得到答案【小问1详解】证明:为的直径,于点,即,;【小问2详解】解:如图所示:连接,由(1)得:,为的直径,于点,设,则,在中,即,解得:,的长为;【小问3详解】解:如图所示:连接交于,在和中,为半径,【点睛】本题主要考查了圆周角定理,全等三角形的判定与性质,三角形外角的性质,勾股定理,熟练掌握圆周角定理,全等三角形的判定与性质,三角形外角的性质,添加恰当的辅助线是解题的关键