1、年级 九年级课题26.1.2 反比例函数的图象和性质课型新授教学媒体多媒体 教学目标 会用描点法画反比例函数的图象结合图象分析并掌握反比例函数的性质体会函数的三种表示方法,领会数形结合的思想方法重点难点理解并掌握反比例函数的图象和性质理解并掌握反比例函数的图象和性质教学准备教师准备是否需要课件学生准备教学过程设计课堂引入提出问题:1一次函数ykxb(k、b是常数,k0)的图象是什么?其性质有哪些?正比例函数ykx(k0)呢?2画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3反比例函数的图象是什么样呢?例习题分析例2见教材P48,用描点法画图,注意强调:(1)列表取值时,x0,因为x0函
2、数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x0,k0,所以y0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴例1(补充)已知反比例函数的图象在第二、四象限,求m值,并指出在每个象限内y随x的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即(k0)自变量x的指数是1,二是根据反比例函数的性质:当图象位于第二、四象限时,k
3、0,则m10,不要忽视这个条件略解:是反比例函数 m231,且m10 又图象在第二、四象限 m10解得且m1 则例2(补充)如图,过反比例函数(x0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AOC和BOD的面积分别是S1、S2,比较它们的大小,可得( )(A)S1S2 (B)S1S2 (C)S1S2 (D)大小关系不能确定分析:从反比例函数(k0)的图象上任一点P(x,y)向x轴、y轴作垂线段,与x轴、y轴所围成的矩形面积,由此可得S1S2 ,故选B随堂练习1已知反比例函数,分别根据下列条件求出字母k的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大2函数yaxa与(a0)在同一坐标系中的图象可能是( ) 3在平面直角坐标系内,过反比例函数(k0)的图象上的一点分别作x轴、y轴的垂线段,与x轴、y轴所围成的矩形面积是6,则函数解析式为 课后练习1若函数与的图象交于第一、三象限,则m的取值范围是 2反比例函数,当x2时,y ;当x2时;y的取值范围是 ; 当x2时;y的取值范围是 3 已知反比例函数,当时,y随x的增大而增大,求函数关系式答案:3 留白:(供教师个性化设计)附:板书设计 教后反思: