ImageVerifierCode 换一换
格式:DOCX , 页数:24 ,大小:1.25MB ,
资源ID:241631      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-241631.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年安徽省怀远县中考数学二模试卷(含答案解析))为本站会员(雪****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023年安徽省怀远县中考数学二模试卷(含答案解析)

1、2023年安徽省怀远县中考数学二模试卷一、选择题(本大题共10小题,共40分.)1. 的相反数是( )A. B. C. D. 2. 如果,则等于( )A. B. C. D. 以上都不对3. 2017年10月18 日上午9时,中国共产党第十九次全国代表大会在北京人民大会堂开幕据统计,在 10月18日9时至10月19日9时期间,新浪微博话题#十九大#阅读量25.3亿,把数据 25.3 亿写成科学记数法正确是()A. 25.3108B. 2.53108C. 2.53109D. 25.31094. 如果m是的整数部分,则m的值为()A. 1B. 2C. 3D. 45. 下列因式分解正确的是( )A.

2、B. C. D. 6. 解方程,去分母正确的是( )A. B. C D. 7. 下列方程中,有两个相等实数根的是( )A. B. C. D. 8. 春意复苏,郑州绿化工程正在如火如荼地进行着,某工程队计划将一块长64m,宽40m的矩形场地建设成绿化广场如图,广场内部修建三条宽相等的小路,其余区域进行绿化若使绿化区域的面积为广场总面积的80%,求小路的宽,设小路的宽为x m,则可列方程( )A. B. C. D. 9. 二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:(1);(2);(3);(4)若点、点、点在该函数图象上,则其中正确的结论有( )A. 1个B. 2个C. 3个D.

3、 4个10. 如图,、是的两条互相垂直的直径,点从点出发,沿的路线匀速运动设(单位为度),那么关于点运动的时间(单位:秒)的函数图象大致是( )A. B. C. D. 二、填空题(本大题共4小题,共20分)11. 当x_时,在实数范围内有意义12. 在国家政策的宏观调控下,某市的商品房成交均价由前年的元下降到今年的元,则这两年平均每年降价的百分率是_13. 若反比例函数y,当xa或xa时,函数值y范围内的整数有k个;当xa1或xa1时,函数值y范围内的整数有k2个,则正整数a_14. 抛物线的顶点坐标是_三、解答题(本大题共9小题,共90分.解答应写出文字说明,证明过程或演算步骤)15. 计算

4、:16 (1)计算;(2)解方程:17. 计算:18. 某公司迎接哈洽会请甲乙两个广告公司布置展厅,若两公司合作天就可以完成任务,若甲公司先做天,剩余部分再由两公司合做,还需天才能完成任务(1)甲公司与乙公司单独完成这项任务各需多少天?(2)甲公司每天所有费用为万元,乙公司每天所有费用为万元,要使这项工作的总费用不超过万元,则甲公司至多工作多少天?19. 现需运送一批货物,有甲、乙两种型号货车可供选择两种型号货车出租价格如表:起步价/元限定里程/km超限定里程(元/km)甲108803乙1801002租用甲种型号货车在限定里程80km内,只需付起步价108元,超过限定里程的部分按3元/km收费

5、,租用乙种型号货车在限定里程100km内,只需支付起步价180元,超过限定里程的部分按2元/km收费,设里程为x千米(1)当x100时,用x分别表示租用甲、乙两种型号货车的费用;(2)当里程为多少千米时,租用两种型号的货车费用相等?20. 某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的50在销售过程中发现:当销售单价为35元时,每天可售出350件,若销售单价每提高5元,则每天销售量减少50件设销售单价为x元(销售单价不低于35元)(1)求这种儿童玩具每天获得的利润w(元)与销售单价x(元)之间的函数表达式;(2)当销售单价为多少元时,该网店销售这种儿童

6、玩具每天获得的利润最大,最大利润是多少元?21. 在平面直角坐标系中,点,(1)若,满足,求点,的坐标;(2)如图,点在直线上,且点的坐标为,求,应满足怎样的关系式?(3)如图,将线段平移到,且点在直线上,且点的纵坐标为,当满足时,求的取值范围22. 如图,在平面直角坐标系中,点在抛物线上,点也在此抛物线上,点的坐标为,直线过点,平行于轴设在直线上方部分图形的面积为(1)当时,_,当时,_(2)根据(1)的结果,猜想当时,的值,并加以证明(3)求与的函数关系式23. 已知二次函数的图象过点,(1)求此二次函数的解析式并在坐标系内画出其草图;(2)求直线的解析式;(3)点是在第二象限内的该抛物线

7、上,并且三角形的面积为,求点的坐标(4)若点在线段上以每秒一个单位长度速度从点向点A运动不与点A,重合,点停止运动时点随之而停止运动,同时,点在射线上以每秒个单位的速度从点A向点运动,设运动时间为秒,请求出三角形的面积S与的函数关系式,并求出为何值时,三角形的面积最大,最大值是多少?2023年安徽省怀远县中考数学二模试卷一、选择题(本大题共10小题,共40分.)1. 的相反数是( )A. B. C. D. 【答案】D【解析】【详解】考查相反数的概念及应用,只有符号不同的两个数,叫做互为相反数.的相反数是.故选D.2. 如果,则等于( )A. B. C. D. 以上都不对【答案】C【解析】【分析

8、】根据幂的乘方的运算法则求解【详解】解:,则故选C【点睛】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则3. 2017年10月18 日上午9时,中国共产党第十九次全国代表大会在北京人民大会堂开幕据统计,在 10月18日9时至10月19日9时期间,新浪微博话题#十九大#阅读量25.3亿,把数据 25.3 亿写成科学记数法正确的是()A. 25.3108B. 2.53108C. 2.53109D. 25.3109【答案】C【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同

9、当原数绝对值时,n是正数;当原数的绝对值1时,n是负数【详解】25.3 亿=2530000000,2530000000用科学记数法表示为:2.53109,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4. 如果m是的整数部分,则m的值为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】找到所求的无理数在哪两个和它接近的整数之间,即可得出所求的无理数的整数部分【详解】解:91516,34,m3,故选:C【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学

10、能力,“夹逼法”是估算的一般方法,也是常用方法5. 下列因式分解正确的是( )A. B. C. D. 【答案】D【解析】【分析】各项分解得到结果,即可作出判断【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键6. 解方程,去分母正确的是( )A. B. C. D. 【答案】D【解析】【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数,在去分母的过程中注意分数线有括号的作用,以及去分母时不能漏乘没有分母的项.【详解】因为中各分母的最小公倍数是6,所以两边同

11、时乘以6,可得,故选择D.【点睛】本题考查去分母,解题的关键是求得各分母的最小公倍数,注意去分母时不能漏乘没有分母的项.7. 下列方程中,有两个相等实数根的是( )A. B. C. D. 【答案】B【解析】【分析】判断上述方程的根的情况,只要计算出判别式的值就可以了有两个相等实数根的一元二次方程就是判别式的值是的一元二次方程【详解】解:A、,此方程有两个不相等的实数根,不符合题意;B、,此方程有两个相等的实数根,符合题意;C、,此方程有两个不相等的实数根,不符合题意;D、,此方程有两个不相等的实数根,不符合题意故选:B【点睛】此题考查一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根

12、;方程有两个相等的实数根;方程没有实数根8. 春意复苏,郑州绿化工程正在如火如荼地进行着,某工程队计划将一块长64m,宽40m的矩形场地建设成绿化广场如图,广场内部修建三条宽相等的小路,其余区域进行绿化若使绿化区域的面积为广场总面积的80%,求小路的宽,设小路的宽为x m,则可列方程( )A B. C. D. 【答案】A【解析】【分析】设小路的宽为x 米,根据矩形的面积公式(将绿化区域合成矩形),进而即可列出关于x的一元二次方程【详解】设小路宽为x 米,则绿化区域的长为米,宽为米,故选:A【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是正确理解题意,利用数形结合的思想,将不规则图形变

13、成规则图形,从而找出等量关系,正确列出方程9. 二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:(1);(2);(3);(4)若点、点、点在该函数图象上,则其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】二次函数的部分图像过点,由此可知,对称轴为直线,根据顶点坐标公式则有,即,由此即可用含有的式子表示,因为图像开口下,所以,由此即可求解【详解】解:二次函数的部分图像过点,对称轴为直线,即,故结论正确;结论,由对称性可知,当和时函数值相同,即当时,即故结论正确;抛物线与x轴有两个不同交点,故结论错误;由对称可得对称点为,根据在对称轴左侧,y随

14、x的增大而增大,结论错误综上所述,正确的有故选B【点睛】本题主要考查二次函数图像的性质,掌握二次函数图像的对称性,根据题意用二次项系数表示一次项系数和常数项是解题的关键10. 如图,、是的两条互相垂直的直径,点从点出发,沿的路线匀速运动设(单位为度),那么关于点运动的时间(单位:秒)的函数图象大致是( )A. B. C. D. 【答案】B【解析】【分析】根据图示,分三种情况:(1)当点沿运动时;(2)当点沿运动时;(3)当点沿运动时;分别判断出的取值情况,进而判断出与点运动的时间(单位:秒)的关系图是哪个即可【详解】解:当点沿运动时,当点在点的位置时,当点在点的位置时,由逐渐减小到;当点沿运动

15、时,根据圆周角定理,可得;当点沿运动时,当点在点的位置时,当点在点的位置时,由逐渐增加到故选:B【点睛】本题主要考查了动点的函数图象,圆周角定理,利用分类讨论的思想求解是解题的关键二、填空题(本大题共4小题,共20分)11. 当x_时,在实数范围内有意义【答案】x-1【解析】【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可【详解】由题意得,2x+20,解得,x-1,故答案为:x-1【点睛】此题考查二次根式的有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键12. 在国家政策的宏观调控下,某市的商品房成交均价由前年的元下降到今年的元,则这两年平均每年降价的百分率是

16、_【答案】【解析】【分析】设这两年平均每年降价的百分率是,那么去年商品房成交均价为,今年商品房成交均价为,然后根据今年的商品房成交均价为元即可列出方程解决问题【详解】解:设这两年平均每年降价的百分率是,由题意,得,解得,不合题意,舍去答:这两年平均每年降价的百分率是故答案为:【点睛】本题考查了一元二次方程的应用,此题和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键13. 若反比例函数y,当xa或xa时,函数值y范围内的整数有k个;当xa1或xa1时,函数值y范围内的整数有k2个,则正整数a_【答案】2或4【解析】【分析】根据的性质,以及y为整数,得到y的取值范

17、围,然后得到正整数a只能取1、2、3、4,分别代入进行判断,即可得到答案【详解】解:根据题意,反比例函数y中,当xa或xa时,且,同理当xa1或xa1时,且,正整数a只能为1、2、3、4,当时,有,则,且,则;,则且,则;当时不符合题意;同理可求,当时,符合题意;当时不符合题意;当时符合题意;综合上述,正整数a为:2或4;故答案为:2或4【点睛】本题考查了反比例函数的性质,一元一次不等式组的解法,解题的关键是掌握反比例函数的性质,以及掌握不等式组的方法进行解题14. 抛物线的顶点坐标是_【答案】【解析】【分析】根据顶点式的顶点坐标为求解即可【详解】解:抛物线的顶点坐标是,故答案为:【点睛】本题

18、考查了二次函数顶点式顶点坐标为,掌握顶点式求顶点坐标是解题的关键三、解答题(本大题共9小题,共90分.解答应写出文字说明,证明过程或演算步骤)15. 计算:【答案】【解析】【分析】首先利用绝对值以及零指数幂的性质、特殊角的三角函数值分别化简求出答案【详解】解:【点睛】此题主要考查了实数运算,正确掌握相关性质是解题关键16. (1)计算;(2)解方程:【答案】(1);(2),【解析】【分析】先根据零指数幂,负整数指数幂,绝对值进行计算,再算加减即可;先整理成一元二次方程的一般形式,再分解因式,即可得出两个一元一次方程,再求出方程的解即可【详解】解: ;,或,解得:,【点睛】本题考查了零指数幂,负

19、整数指数幂,实数的混合运算,解一元二次方程等知识点,能正确根据实数的运算法则进行计算是解的关键,能把一元二次方程转化成一元一次方程是解的关键17. 计算:【答案】【解析】【分析】直接利用积的乘方进行化简,进而利用单项式乘以单项式以及整式的除法运算法则求出即可【详解】解: 【点睛】此题主要考查了整式的乘除法运算,单项式的乘法与除法运算,正确掌握运算法则是解题关键18. 某公司为迎接哈洽会请甲乙两个广告公司布置展厅,若两公司合作天就可以完成任务,若甲公司先做天,剩余部分再由两公司合做,还需天才能完成任务(1)甲公司与乙公司单独完成这项任务各需多少天?(2)甲公司每天所有费用为万元,乙公司每天所有费

20、用为万元,要使这项工作的总费用不超过万元,则甲公司至多工作多少天?【答案】(1)甲公司单独完成这项任务需天,乙公司单独完成这项任务需天 (2)甲公司至多工作天【解析】【分析】设甲公司单独完成此项工程天,乙公司天,利用若甲公司先做天,剩余部分再由甲、乙两公司合作,还需要天才能完成,设总工作量为,得出等式方程,求出即可;设甲公司施工天,利用中所求数据得出甲乙两公司每人一天完成的工作量,进而得出不等式求出即可【小问1详解】设甲公司单独完成此项工程天,由题意得 解得: 经检验是原方程的解,则 答:甲公司单独完成这项任务需天,乙公司单独完成这项任务需天【小问2详解】设甲公司施工天,由题意得 解得:,答:

21、甲公司至多工作天【点睛】本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程求解19. 现需运送一批货物,有甲、乙两种型号货车可供选择两种型号货车出租价格如表:起步价/元限定里程/km超限定里程(元/km)甲108803乙1801002租用甲种型号货车在限定里程80km内,只需付起步价108元,超过限定里程的部分按3元/km收费,租用乙种型号货车在限定里程100km内,只需支付起步价180元,超过限定里程的部分按2元/km收费,设里程为x千米(1)当x100时,用x分别表示租用甲、乙两种型号货车的费用;(2)当里程为多少千米时,租用两种

22、型号的货车费用相等?【答案】(1)租用甲种型号货车费用为(3x-132)元,租用乙种型号货车费用为:(2x-20)元;(2)112km【解析】【分析】(1)行驶里程,根据甲车内,付起步价元,超过的部分按元/,列出代数式;再根据乙车内,付起步价元,超过的部分按元/,列出代数式即可(2)当时,甲车租金元,乙车租金元,不相等;当时,结合题意列方程,解方程即可;当时,结合(1)所列的代数式,列出方程,解方程即可【详解】(1)根据题意可得:租用甲种型号货车费用为:元,租用乙种型号货车费用为:元;(2)当时,甲货车租金元,乙货车租金元,不相等;当时,则有,解得因为,舍去,当时,则有,解得所以当里程为时,租

23、用两种型号的车费用相等【点睛】本题考查了一元一次方程的应用,列代数式等知识,读懂题意正确列出代数式,再结合题意找出等量关系列出一元一次方程是解题关键20. 某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的50在销售过程中发现:当销售单价为35元时,每天可售出350件,若销售单价每提高5元,则每天销售量减少50件设销售单价为x元(销售单价不低于35元)(1)求这种儿童玩具每天获得的利润w(元)与销售单价x(元)之间的函数表达式;(2)当销售单价为多少元时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少元?【答案】(1) (2)当销售单价为45元时

24、,该网店销售这种儿童玩具每天获得的利润最大,最大利润是3750元【解析】【分析】(1)根据总利润每件利润销售量列出函数解析式;(2)根据(1)中解析式,由函数的性质和x的取值范围求出最大值【小问1详解】,这种儿童玩具每天获得的利润w(元)与销售单价x(元)之间的函数表达式为;【小问2详解】,对称轴为,又每件儿童玩具的销售利润不高于进价的50,当时,答:当销售单价为45元时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是3750元【点睛】本题考查二次函数的应用,解题的关键是明确题意,列出函数解析式21. 在平面直角坐标系中,点,(1)若,满足,求点,的坐标;(2)如图,点在直线上,且点的坐

25、标为,求,应满足怎样的关系式?(3)如图,将线段平移到,且点在直线上,且点的纵坐标为,当满足时,求的取值范围【答案】(1),; (2) (3)或【解析】【分析】(1)根据非负数的性质求得、的值,即可求得、的坐标;(2)根据待定系数法求得直线的解析式,然后把代入即可求得;(3)根据易求得、的坐标,即可求得直线的解析式,由三角形面积公式,根据得出关于的不等式,解不等式即可求得【小问1详解】解:由,满足可知,解得,点,;【小问2详解】解:设直线的解析式为,把点,代入得,解得,直线的解析式为,点在直线上,且点的坐标为,;【小问3详解】解:设直线的解析式为, ,解得或4(舍去),直线为,直线的解析式为,

26、直线与轴,轴的交点分别为,点在直线上,且点的纵坐标为,解得或,当满足时,的取值范围是或【点睛】本题考查的知识点有:待定系数法求一次函数的解析式,坐标系内三角形的面积求法,一元一次不等式,坐标和图形变换平移等知识点,运用数形结合可以打开本题的解题思路22. 如图,在平面直角坐标系中,点在抛物线上,点也在此抛物线上,点坐标为,直线过点,平行于轴设在直线上方部分图形的面积为(1)当时,_,当时,_(2)根据(1)的结果,猜想当时,的值,并加以证明(3)求与的函数关系式【答案】(1); (2)当时,证明见解析 (3)【解析】【分析】(1)先用将,的坐标用表示,再判断出,算出,即可得出结论;(2)同(1

27、)的方法即可得出结论;(3)先分点再点上方和下方两种情况,每一种情况再分直线把分割成两部分和全部在直线上方或下方,讨论计算【小问1详解】解:点在抛物线上,在抛物线上,轴, 轴,当时,在中,当时,在中,故答案为:2,2;【小问2详解】解:当时,理由:当时,在中,;【小问3详解】解:当点在点上方时,、当时,即:,此时,直线与的边,的交点记为,由(2)知,;、当时,;当点在点下方时,、当时,此种情况不存在;、当时,即:,当时,即:时,同的方法得,当时,即:,【点睛】此题是二次函数综合题,主要考查了直角三角形的判定和性质,锐角三角函数的意义,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键,也

28、是难点23. 已知二次函数的图象过点,(1)求此二次函数的解析式并在坐标系内画出其草图;(2)求直线的解析式;(3)点是在第二象限内的该抛物线上,并且三角形的面积为,求点的坐标(4)若点在线段上以每秒一个单位长度的速度从点向点A运动不与点A,重合,点停止运动时点随之而停止运动,同时,点在射线上以每秒个单位的速度从点A向点运动,设运动时间为秒,请求出三角形的面积S与的函数关系式,并求出为何值时,三角形的面积最大,最大值是多少?【答案】(1);图见解析 (2) (3) (4),当时,最大,最大面积是【解析】【分析】(1)根据待定系数法即可求得;(2)利用已知的两点的坐标根据待定系数法求得一次函数的

29、解析式即可;(3)设出点的纵坐标,然后根据三角形面积求得纵坐标,然后代入解析式,解得即可;(4)由题意,得,根据,得到是等腰直角三角形,然后根据,求得点的纵坐标为,最后求出S与的函数关系式后利用二次函数的性质求出S的最大值【小问1详解】解:二次函数的图象过点,设二次函数的解析式为,把代入得,解得:,此二次函数的解析式为;画出函数的图象如图:【小问2详解】解:设直线的解析式为,把,代入得,解得,直线的解析式为;【小问3详解】解:设的纵坐标为,三角形的面积为,把代入得,解得,点是在第二象限内的该抛物线上,点的坐标为;【小问4详解】解:由题意,得,是等腰直角三角形,点的纵坐标为,当时,最大,最大面积是【点睛】本题是二次函数的综合题型,其中涉及到的知识待定系数法求二次函数的解析式、求一次函数的解析式,二次函数的性质以及三角形的面积求法在求有关动点问题时要注意分析题意分情况讨论结果