ImageVerifierCode 换一换
格式:PPT , 页数:22 ,大小:2.31MB ,
资源ID:23716      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-23716.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【鲁教版】数学九年级下册:5.3《垂径定理》课件(1))为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【鲁教版】数学九年级下册:5.3《垂径定理》课件(1)

1、3.3垂径定理(1),请观察下列三个银行标志有何共同点?,圆的对称性,圆是轴对称图形吗?,如果是,它的对称轴是什么?你能找到多少条对称轴?,你是用什么方法解决上述问题的?,圆的对称性,圆是轴对称图形.,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.,可利用折叠的方法即可解决上述问题.,注意:对称轴是直线,不能说每一条直径都是它的对称轴;,(1)该图是轴对称图形吗?,(2)能不能通过改变AB、CD的位置关系,使它成为轴对称图形?,直径CD和弦AB互相垂直,如图,AB是O的一条弦,CD是O直径.,特殊情况,在O中,AB为弦, CD为直径,CDAB,提问:你在图中能找到哪些相等的量?并证明你

2、猜想的结论。,如图,小明的理由是:,连接OA,OB,则OA=OB.,在RtOAM和RtOBM中,OA=OB,OM=OM,,RtOAMRtOBM.,AM=BM.,点A和点B关于CD对称.,O关于直径CD对称,当圆沿着直径CD对折时,点A与点B重合,探索规律,能够重合的弧叫等弧,垂直于弦的直径平分弦,并且平分弦所对的两 条弧.,CDAB,几何语言 如图 CD是直径,AM=BM,探索规律,分一条弧成相等的两条弧的点叫做这条弧的中点,垂径定理,垂径定理的几个基本图形,作法:, 连结AB.,作AB的垂直平分线 CD,交弧AB于点E.,点E就是所求弧AB的中点,C,D,A,B,E,变式一: 求弧AB的四等

3、分点,C,D,A,B,E,F,G,m,n,变式一: 求弧AB的四等分点,C,D,A,B,F,G,强调:等分弧时一定要作弧所对的弦的垂直平分线,例2 已知:如图,线段AB与O交于C、D两点,且OA=OB 求证:AC=BD ,思路:,CM=DM OA=OB AM=BM AC=BD,O,A,B,C,M,D,作OMAB,垂足为M,圆心到圆的一条弦的距离叫做弦心距,小结:,1画弦心距是圆中常见的辅助线;,2 半径(r)、半弦、弦心距(d)组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:,例3,如图,一条排水管的截面。已知排水管的半径OB=10,水面宽AB=16。求截面圆心O到水面的距离OC

4、。,1已知0的半径为13,一条弦AB的弦心距为5,则这条弦的弦长等于 ,24,C,目标训练,3过O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )A3 B6cm C cm D9cm,4如图,O的直径为10,弦AB长为8,M是弦AB上的动点,则OM的长的取值范围是( )A3OM5 B4OM5 C3OM5 D4OM5,A,A,6已知O的半径为10,弦ABCD,AB=12,CD=16,则AB和CD的距离为 ,2或14,5.如图,圆O的弦AB8 , DC2, 直径CEAB于D,求半径OC的长为,5,本节课主要内容:(1)圆的轴对称性;(2)垂径定理,2垂径定理的应用:(1)作图;(2)计算和证明,3解题的主要方法:,总结回顾,(2)半径(r)、半弦、弦心距(d)组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:,(1)画弦心距是圆中常见的辅助线;,再见,1. 已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。 求证:ACBD。,E,课外拓展,2如图,已知AB、AC为弦,OMAB于点M, ONAC于点N ,BC=4,求MN的长,思路:由垂径定理可得M、N分别是AB、AC的中点,所以MN= BC=2,