ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:663.69KB ,
资源ID:235645      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-235645.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年高考数学二轮复习(热点·重点·难点)专练34:二项分布、正态分布、离散型随机变量的均值与方差(含答案解析))为本站会员(热***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023年高考数学二轮复习(热点·重点·难点)专练34:二项分布、正态分布、离散型随机变量的均值与方差(含答案解析)

1、重难点34 二项分布、正态分布、离散型随机变量的均值与方差1离散型随机变量的分布列、均值与方差一般地,若离散型随机变量X的分布列为Xx1x2xixnPp1p2pipn(1)均值:称E(X)x1p1x2p2xipixnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平(2)方差:称D(X)xiE(X)2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差2均值与方差的性质(1)E(aXb)aE(X)b.(2)D(aXb)a2D(X)(a,b为常数)3两点分布与二项分布的均值、方差项目均值方差变量X服从两点分布E(X)pD(

2、X)p(1p)XB(n,p)E(X)npD(X)np(1p)4正态分布(1)正态曲线的特点:曲线位于x轴上方,与x轴不相交;曲线是单峰的,它关于直线x对称;曲线在x处达到峰值;曲线与x轴之间的面积为1;当一定时,曲线的位置由确定,曲线随着的变化而沿x轴平移;当一定时,曲线的形状由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散(2)正态分布的三个常用数据P(X)0.682_7;P(2X2)0.954_5;P(3X3)0.997_3.离散型随机变量的分布列、均值与方差,两点分布与二项分布的均值、方差这几年热度有所抬头,一定要引起足够的重视,主要在解答题

3、中综合考查.正态分布难度为基础题,题型为选择或填空题.(建议用时:40分钟)一、单选题1已知离散型随机变量的分布列为则的数学期望ABCD2已知随机变量服从正态分布N(3, ),则P(ABCD3设,则随机变量的分布列是:则当在内增大时A增大B减小C先增大后减小D先减小后增大4已知随机变量Z服从正态分布,若P(Z2)=0.023,则P(-2Z2)=A0.477B0.625C0.954D0.9775某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为A100B200C300D4006某群体中的每位成员使用移动支付的概率都为,

4、各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,则A0.7B0.6C0.4D0.37投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A0.648B0.432C0.36D0.3128某物理量的测量结果服从正态分布,下列结论中不正确的是()A越小,该物理量在一次测量中在的概率越大B该物理量在一次测量中大于10的概率为0.5C该物理量在一次测量中小于9.99与大于10.01的概率相等D该物理量在一次测量中落在与落在的概率相等9某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立已知

5、该棋手与甲、乙、丙比赛获胜的概率分别为,且记该棋手连胜两盘的概率为p,则()Ap与该棋手和甲、乙、丙的比赛次序无关B该棋手在第二盘与甲比赛,p最大C该棋手在第二盘与乙比赛,p最大D该棋手在第二盘与丙比赛,p最大10将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()ABCD二、填空题11一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则_12已知随机变量X服从正态分布,且,则_13甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率

6、为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是_14已知甲、乙两球落入盒子的概率分别为和假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_;甲、乙两球至少有一个落入盒子的概率为_三、解答题15某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题的概

7、率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.16某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立(1)记件产品中恰有件不合格品的概率为,求的最大值点;(2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值已知每

8、件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?17为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产

9、线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,其中xi为抽取的第i个零件的尺寸,.用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z服从正态分布,则,.18一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物

10、为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,(1)已知,求;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,当时,;(3)根据你的理解说明(2)问结论的实际含义重难点34 二项分布、正态分布、离散型随机变量的均值与方差1离散型随机变量的分布列、均值与方差一般地,若离散型随机变量X的分布列为Xx1x2xixnPp1p2pipn(1)均值:称E(X)x1p1x2p2xipixnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的

11、平均水平(2)方差:称D(X)xiE(X)2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差2均值与方差的性质(1)E(aXb)aE(X)b.(2)D(aXb)a2D(X)(a,b为常数)3两点分布与二项分布的均值、方差项目均值方差变量X服从两点分布E(X)pD(X)p(1p)XB(n,p)E(X)npD(X)np(1p)4正态分布(1)正态曲线的特点:曲线位于x轴上方,与x轴不相交;曲线是单峰的,它关于直线x对称;曲线在x处达到峰值;曲线与x轴之间的面积为1;当一定时,曲线的位置由确定,曲线随着的变化而沿x轴平移;当一定时,曲线的形状

12、由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散(2)正态分布的三个常用数据P(X)0.682_7;P(2X2)0.954_5;P(3X3)0.997_3.离散型随机变量的分布列、均值与方差,两点分布与二项分布的均值、方差这几年热度有所抬头,一定要引起足够的重视,主要在解答题中综合考查.正态分布难度为基础题,题型为选择或填空题.(建议用时:40分钟)一、单选题1已知离散型随机变量的分布列为则的数学期望ABCD【答案】A【解析】,故选A2已知随机变量服从正态分布N(3, ),则P(ABCD【答案】D【解析】服从正态分布N(3,a2) 则曲线关于 对称

13、,3设,则随机变量的分布列是:则当在内增大时A增大B减小C先增大后减小D先减小后增大【答案】D【解析】方法1:由分布列得,则,则当在内增大时,先减小后增大.方法2:则故选D.4已知随机变量Z服从正态分布,若P(Z2)=0.023,则P(-2Z2)=A0.477B0.625C0.954D0.977【答案】C【解析】因为随机变量服从正态分布,所以正态曲线关于直线对称,又所以,故选C.5某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为A100B200C300D400【答案】B【解析】试题分析:设没有发芽的种子数为,则,所

14、以6某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,则A0.7B0.6C0.4D0.3【答案】B【解析】判断出为二项分布,利用公式进行计算即可或,,可知故答案选B.7投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A0.648B0.432C0.36D0.312【答案】A【解析】试题分析:该同学通过测试的概率为,故选A考点:n次独立重复试验8某物理量的测量结果服从正态分布,下列结论中不正确的是()A越小,该物理量在一次测量中在的概率越大B该物

15、理量在一次测量中大于10的概率为0.5C该物理量在一次测量中小于9.99与大于10.01的概率相等D该物理量在一次测量中落在与落在的概率相等【答案】D【解析】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.故选:D.9某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结

16、果相互独立已知该棋手与甲、乙、丙比赛获胜的概率分别为,且记该棋手连胜两盘的概率为p,则()Ap与该棋手和甲、乙、丙的比赛次序无关B该棋手在第二盘与甲比赛,p最大C该棋手在第二盘与乙比赛,p最大D该棋手在第二盘与丙比赛,p最大【答案】D【解析】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为,则此时连胜两盘的概率为则;记该棋手在第二盘与乙比赛,且连胜两盘的概率为,则记该棋手在第二盘与丙比赛,且连胜两盘的概率为则则即,则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D10将一个

17、骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()ABCD【答案】B【解析】骰子连续抛掷三次,它落地时向上的点数依次成等差数列落地时向上的点数若不同,则为1,2,3或1,3,5,或2,3,4或2,4,6或3,4,5或4,5,6.共有62=12种情况,也可全相同,有6种情况共有18种情况若不考虑限制,有=216落地时向上的点数依次成等差数列的概率为故选:B.二、填空题11一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则_【答案】1.96【解析】由于是有放回的抽样,所以是二项分布,,填1.9612已知随机变量X服从正态分布,且,则_【答案】【解

18、析】因为,所以,因此故答案为:13甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是_【答案】0.18【解析】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,甲队以获胜的概率是综上所述,甲队以获胜的概率是14已知甲、乙两球落入盒子的概率分别为和假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_;甲、乙两球至少有一个落入盒子的概率为_【答案】 【解析】甲、乙

19、两球落入盒子的概率分别为,且两球是否落入盒子互不影响,所以甲、乙都落入盒子的概率为,甲、乙两球都不落入盒子的概率为,所以甲、乙两球至少有一个落入盒子的概率为.故答案为:;.三、解答题15某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确

20、回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)类【解析】(1)由题可知,的所有可能取值为,;所以的分布列为(2)由(1)知,若小明先回答问题,记为小明的累计得分,则的所有可能取值为,;所以因为,所以小明应选择先回答类问题16某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为

21、不合格品相互独立(1)记件产品中恰有件不合格品的概率为,求的最大值点;(2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】(1);(2)(i);(ii)应该对余下的产品作检验.【解析】(1)方法一:【通性通法】利用导数求最值件产品中恰有件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为;方法二:【最优

22、解】均值不等式由题可知,20件产品中恰有2件不合格品的概率为,当且仅当,即可得所求(2)由(1)知,.(i)令表示余下的件产品中的不合格品件数,依题意知,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.17为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零

23、件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,其中xi为抽取的第i个零件的尺寸,.用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z服从正态分布,则,.【答案】(1),(2)()见详解;()需要.

24、,【解析】(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此.的数学期望为.(2)(i)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由,得的估计值为,的估计值为,由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查.剔除之外的数据,剩下数据的平均数为,因此的估计值为.,剔

25、除之外的数据,剩下数据的样本方差为,因此的估计值为.18一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,(1)已知,求;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,当时,;(3)根据你的理解说明(2)问结论的实际含义【答案】(1)1;(2)见解析;(3)见解析.【解析】(1).(2)设,因为,故,若,则,故.,因为,故有两个不同零点,且,且时,;时,;故在,上为增函数,在上为减函数,若,因为在为增函数且,而当时,因为在上为减函数,故,故为的一个最小正实根,若,因为且在上为减函数,故1为的一个最小正实根,综上,若,则.若,则,故.此时,故有两个不同零点,且,且时,;时,;故在,上为增函数,在上为减函数,而,故,又,故在存在一个零点,且.所以为的一个最小正实根,此时,故当时,.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.