ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:1.23MB ,
资源ID:234885      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-234885.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届高考数学一轮复习专题16:解三角形(3)与三角恒等变换综合问题(含答案))为本站会员(热***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023届高考数学一轮复习专题16:解三角形(3)与三角恒等变换综合问题(含答案)

1、专题16 解三角形(3)与三角恒等变换综合问题一、 典例分析题型三:与三角函数、三角恒等变换综合的问题1(2017新课标)的内角,的对边分别为,已知,则ABCD2(2019浙江)在中,点在线段上,若,则,3(2016新课标)的内角,的对边分别为,若,则4(2013辽宁)在,内角,所对的边长分别为,且,则ABCD5(2013新课标)已知锐角的内角,的对边分别为,则A10B9C8D56(2013山东)的内角、的对边分别是、,若,则AB2CD17(2013浙江)中,是的中点,若,则8(2021上海)已知、为的三个内角,、是其三条边,(1)若,求、;(2)若,求9(2020新课标)的内角,的对边分别为

2、,已知(1)求;(2)若,证明:是直角三角形10(2016浙江)在中,内角,所对的边分别为,已知(1)证明:;(2)若,求的值二、真题集训1(2015四川)已知、为的内角,是关于方程两个实根()求的大小()若,求的值2(2015湖南)设的内角,的对边分别为,()证明:;()若,且为钝角,求,3(2014浙江)在中,内角,所对的边分别为,已知,(1)求角的大小;(2)若,求的面积4(2014湖南)如图,在平面四边形中,()求的值;()若,求的长5(2013重庆)在中,内角,的对边分别是,且(1)求;(2)设,求的值典例分析答案题型三:与三角函数、三角恒等变换综合的问题1(2017新课标)的内角,

3、的对边分别为,已知,则ABCD分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可解答:解:,由正弦定理可得,故选:点评:本题考查了诱导公式和两角和的正弦公式以及正弦定理,属于基础题2(2019浙江)在中,点在线段上,若,则,分析:解直角三角形,可得,在三角形中,运用正弦定理可得;再由三角函数的诱导公式和两角和差公式,计算可得所求值解答:解:在直角三角形中,在中,可得,可得;,即有,故答案为:,点评:本题考查三角形的正弦定理和解直角三角形,考查三角函数的恒等变换,化简整理的运算能力,属于中档题3(2016新课标)的内角,的对边分别为,若,则分析:运用同角的平方关系可得,再由诱导公式和两角和

4、的正弦公式,可得,运用正弦定理可得,代入计算即可得到所求值解答:解:由,可得,由正弦定理可得故答案为:点评:本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题4(2013辽宁)在,内角,所对的边长分别为,且,则ABCD分析:利用正弦定理化简已知的等式,根据不为0,两边除以,再利用两角和与差的正弦函数公式化简求出的值,即可确定出的度数【解答】解:利用正弦定理化简已知等式得:,即为锐角,则故选:点评:此题考查了正弦定理,两角和与差的正弦函数公式,以及诱导公式,熟练掌握正弦定理是解本题的关键5(2013新课标)已知锐角的内角,的对边分别为,

5、则A10B9C8D5分析:利用二倍角的余弦函数公式化简已知的等式,求出的值,再由与的值,利用余弦定理即可求出的值解答:解:,即,为锐角,又,根据余弦定理得:,即,解得:或(舍去),则故选:点评:此题考查了余弦定理,二倍角的余弦函数公式,熟练掌握余弦定理是解本题的关键6(2013山东)的内角、的对边分别是、,若,则AB2CD1分析:利用正弦定理列出关系式,将,的值代入,利用二倍角的正弦函数公式化简,整理求出的值,再由,及的值,利用余弦定理即可求出的值解答:解:,由正弦定理得:,由余弦定理得:,即,解得:或(经检验不合题意,舍去),则故选:点评:此题考查了正弦、余弦定理,二倍角的正弦函数公式,熟练

6、掌握定理是解本题的关键7(2013浙江)中,是的中点,若,则分析:作出图象,设出未知量,在中,由正弦定理可得,进而可得,在中,还可得,建立等式后可得,再由勾股定理可得,而,代入化简可得答案解答:解:如图设,在中,由正弦定理可得,代入数据可得,解得,故,而在中,故可得,化简可得,解之可得,再由勾股定理可得,联立可得,故在中,另解:设为,为,正弦定理得又有,联立消去,得,拆开,将1化成,构造二次齐次式,同除,可得,若,则,解得,易得另解:作交于,设,用和相似解得,则,易得故答案为:点评:本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属难题8(2021上海)已知、为的三个内角,、

7、是其三条边,(1)若,求、;(2)若,求分析:(1)由已知利用正弦定理即可求解的值;利用余弦定理即可求解的值(2)根据已知利用两角差的余弦公式,同角三角函数基本关系式可求得,的值,进而根据正弦定理可得的值解答:解:(1)因为,可得,又,可得,由于,可得(2)因为,可得,又,可解得,或,因为,可得,可得为钝角,若,可得,可得,可得为钝角,这与为钝角矛盾,舍去,所以,由正弦定理,可得点评:本题主要考查了正弦定理,余弦定理,两角差的余弦公式,同角三角函数基本关系式在解三角形中的应用,考查了计算能力和转化思想,属于中档题9(2020新课标)的内角,的对边分别为,已知(1)求;(2)若,证明:是直角三角

8、形分析:(1)由已知利用诱导公式,同角三角函数基本关系式化简已知等式可得,解方程得,结合范围,可求的值;(2)由已知利用正弦定理,三角函数恒等变换的应用可求,结合范围,可求,即可得证解答:解:(1),解得,;(2)证明:,由正弦定理可得,可得,可得是直角三角形,得证点评:本题主要考查了正弦定理,三角函数恒等变换的应用,考查了计算能力和转化思想,考查了方程思想的应用,属于基础题10(2016浙江)在中,内角,所对的边分别为,已知(1)证明:;(2)若,求的值分析:(1)由,利用正弦定理可得:,而,代入化简可得:,由,可得,即可证明,可得,利用即可得出解答:(1)证明:,由,或,化为,或(舍去)解

9、:,点评:本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题真题集训答案1(2015四川)已知、为的内角,是关于方程两个实根()求的大小()若,求的值解:()由已知,方程的判别式:,所以,或由韦达定理,有,所以,从而所以,所以()由正弦定理,可得,解得,或(舍去)于是,则所以2(2015湖南)设的内角,的对边分别为,()证明:;()若,且为钝角,求,解:()证明:,由正弦定理:,又,得证(),由(1),为钝角,又,综上,3(2014浙江)在中,内角,所对的边分别为,已知,(1)求角的大小;(2)若,求的面积解:(1)由题意得,化为,由得,又,得,即,;(2)由,利用正弦定理可得,得,由,得,从而,故,4(2014湖南)如图,在平面四边形中,()求的值;()若,求的长解:()(),由正弦定理知,5(2013重庆)在中,内角,的对边分别是,且(1)求;(2)设,求的值解:(1),即,由余弦定理得:,又为三角形的内角,则;(2)由题意,即,即,即,解得:或