ImageVerifierCode 换一换
格式:DOCX , 页数:28 ,大小:1.01MB ,
资源ID:231877      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-231877.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(九年级数学寒假班讲义:第1讲 数与式(教师版))为本站会员(热***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

九年级数学寒假班讲义:第1讲 数与式(教师版)

1、数与式知识结构模块一:实数与运算知识精讲一、 数的整除1、 整数的意义和分类:自然数:零和正整数统称为自然数;整数:正整数、零、负整数,统称为整数2、 整除:(1)整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a(2)整除的条件(两个必须同时满足):除数、被除数都是整数;被除数除以除数,商是整数且余数为零3、 除尽与整除的异同点:相同点:除尽与整除,都没有余数,即余数都为0;除尽中包含整除;不同点:整除中被除数、除数和商都为整数,余数为零;除尽中被除数、除数和商不一定为整数,余数为零4、 因数和倍数:整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数

2、(也称为约数)注意:(1)在整除的条件下,才有因数和倍数的概念;(2)倍数和因数是相互依存的,不能单独存在5、 求一个数的因数的方法:(1)列乘法算式:根据因数的意义,有序地写出某数的所有两个数乘积的乘法算式,乘法算式中的因数就是该数的因数(2)列除法算式:用此数除以任意整数,所得商是整数而无余数,这些除数和商就是该数的因数6、 求一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与非零自然数相乘,所得之数就是这个数的倍数7、 因数和倍数的性质(规律总结):1是任何一个整数的因数,任何整数都是1的倍数;0是任何一个不等于0的整数的倍数,任何一个不等于0的整数都是0的因数;一个正整数既是它本

3、身的最大因数,也是它本身的最小倍数8、 2的倍数的特征:个位数字是0,2,4,6,8的数9、 偶数、奇数的意义以及它们的运算性质:在自然数中,是2的倍数的数是偶数(即个位是0,2,4,6,8的数);在自然数中,不是2的倍数的数是奇数(即个位是1,3,5,7,9的数)注:最小的偶数是0,没有最大的偶数;最小的奇数是1,没有最大的奇数;一个整数不是奇数就是偶数,奇数的个位上的数是奇数10、 5的倍数的特征:个位数字是0或5的整数,都是5的倍数11、 3的倍数的特征:一个整数各个数位上的数字相加的和是3的倍数的数是3的倍数注:(1)既能被2整除又能被5整除的整数的特征:个位上数字是0的数(或者说是1

4、0的倍数的整数);(2)既能被3整除又能被5整除的整数的特征:个位上数字是0或5,且各个位上数字相加之和是3的倍数(或者说是15的倍数的整数);(3)既能被2整除又能被3整除的整数的特征:个位上数字是0,2,4,6,8且各个位上数字相加之和是3的倍数(或者说是6的倍数的整数);(4)既能被2整除又能被3和5整除的整数的特征:个位上数字是0,且各个位上数字相加之和是3的倍数(或者说是30的倍数的整数)12、 素数与合数:素数:一个正整数,如果只有1个和它本身两个因数,这样的数叫做素数合数:一个正整数,如果除了1和它本身以外还有别的因数,这样的数叫做合数正整数按照含因数的个数分类,可以分为1、素数

5、与合数13、 素因数和分解素因数:素因数:每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数分解素因数:把一个合数用素因数相乘的形式表示出来,叫做分解素因数注:素因数相对于合数而言,不能单独存在;一个数分解素因数的形式是唯一的;书写时,一般写成“合数=素因数相乘”的形式14、 分解素因数的方法:分解素因数的方法通常有以下两种:树枝分解法:利用树形图逐步把合数分解成素因数相乘的形式短除法:先用一个能整除这个合数的素数(通常从最小的开始)去除;得出的商如果是合数,再按照上面的方法继续下去,直到得出的商是素数为止;然后把各个除数和最后的商按从小到大的顺序写成连

6、乘的形式二、 分数1、 分数的意义:把一个总体平均分成若干份之后,其中的1份或若干份可以用分数表示2、 分数和除法的关系:两个正整数相除,他们的商可以用分数表示,具体关系如下:,即:,其中p为分子,q为分母读法:读作q分之p特别地,当q = 1时,3、 用数轴上的点表示分数:任何一个分数可以用数轴上的点来表示4、 分数的基本性质: 分数的分子和分母都乘以或除以同一个不为零的数,所得的分数与原分数的大小相等即:(,)5、 最简分数:分子和分母互素的分数,叫做最简分数6、 约分:把一个分数的分子与分母的公因数约去的过程,称为约分7、 通分:将异分母的分数分别化为与原分数大小相等的同分母的分数,这个

7、过程叫做通分(1)两个分数的公分母:两个分数的分母的公倍数叫做这两个分数的公分母,通常取最小公倍数作公分母(2)通分的依据:分数的基本性质,所以通分后分数值保持不变(3)通分的方法:一般先求出几个分数的分母的最小公倍数,把这个最小公倍数做分母,分子扩大相应的倍数8、 分数的大小比较:(1)同分母的分数,分子大的那个分数较大(2)同分子分数,分母大的那个分数反而小(3)异分母的分数,先通分,化成同分母后再按照同分母分数的大小比较的方法确定分数的大小关系三、 比和比例1、 比的定义:a、b是两个数或两个同类的量,为了把b和a相比较,将a与b相除,叫做a与b的比记做a:b,或写成,其中,读作:a比b

8、,或a与b的比“:”叫做比号,读作“比”;比号前的数a叫做比的前项;比号后面的数b叫做比的后项前项a除以后项b所得的商叫做比值2、 比与分数、除法之间的关系:比的前项相当于分数的分子和除式中的被除数;比的后项相当于分数的分母和除式中的除数;比号相当于分数线和除号;比值相当于分数值和除式的商求两个同类量的比值时,如果单位不同,必须把这两个量化成相同的单位3、 比的基本性质:(1)比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变即 ()运用比的性质可以把比化成最简整数比(2)三项连比的性质:若,则,若,则4、 比例:(1)表示两个比相等的式子,叫做比例式子表示为:;(2)内项

9、、外项:b、c叫做比例的内项;a、b叫做比例的外项;(3)比例中项:当b = c时,b叫做比例中项5、 比例的基本性质:若或,则反之若a,b,c,d都不为零,且,则或即:内项之积等于外项之积6、 比例尺:(1)图上距离与实际距离的比叫做比例尺;(2)图上距离:实际距离=比例尺;(3)比例尺是一个比,是一个图上距离与实际距离的比四、 实数1、 有理数、无理数及数轴表示:有理数:整数与分数统称为有理数无理数:无限,不循环小数数轴:规定了原点、正方向和单位长度的一条直线叫做数轴数轴的三要素:原点、正方向、单位长度有理数在数轴上的表示:任何一个有理数都可以用数轴上的点来表示;反之不然,数轴上的点不一定

10、都用来表示有理数;在数轴上,原点左边是负有理数,原点右边是正有理数,原点为0;数轴上右边的点所表示的数大于左边的点所表示的数2、 相反数:(1)相反数:只有符号不同的两个数,我们称其中的一个数为另一个数的相反数,也称这两个数互为相反数(2)正数的相反数是负数,负数的相反数是正数,零的相反数是零(3)互为相反数的两数和为0;反之,如果两数和为0,那么这两个数互为相反数即如果a、b互为相反数,那么a + b = 0反之,如果a + b = 0,那么a、b互为相反数(4)互为相反数的两个数的几何意义:在数轴上,互为相反数的两个点位于原点两侧且到原点的距离相等3、 倒数:乘积为1的两个有理数互为倒数倒

11、数是本身的数是1和,而0没有倒数4、 绝对值:(1)绝对值:一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值一般用符号表示a的绝对值(2)任何一个数的绝对值都大于或等于零,即(3)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零反过来:绝对值是它本身的数是正数和零,即非负数;绝对值是它相反数的数是负数和零,即非正数;即(互为相反数的两个数,它们的绝对值相等)5、 平方根、立方根、n次方根:平方根:若一个数x的平方等于a,即,那么这个数x就叫做a的平方根,一个正数有两个平方根,它们互为相反数;0有一个平方根,就是它本身;负数没有平方根立方根:如果一个数的立方等于a,

12、那么这个数叫a的立方根,也称为三次方根;也就是说,如果,那么x叫做a的立方根任何实数有唯一确定的立方根正数立方根是一个正数;负数立方根是一个负数;0的立方根是0n次方根:如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根;奇次方根性质:实数a的奇次方根有且只有一个,用“”表示偶次方根性质:正数a的偶次方根有两个,它们互为相反数,用“”表示;0的偶次方根是0,负数没有偶次方根6、 实数及运算:运算:加、减、乘、除、乘方、幂运算7、 近似数、有效数字及科学记数法:近似数:一个数与准确数相近(比这个准确数略多或略少),这个数称为近似数有效数字:是指从左边第一个不是零的数字起往右

13、到末位数字为止的的所有数字科学计数法:(,n为正整数)例题解析【例1】 (奉贤区二模第1题)如果两个实数a,b满足a + b = 0,那么a、b一定是( )A都等于0B一正一负C互为相反数D互为倒数【难度】【答案】C【解析】根据相反数的性质,互为相反数的两数和为0,反过来说和为0的两个数互为相反数,故选C,A、B表述不全【总结】考查相反数的性质【例2】 (浦东新区二模第1题)2016的相反数是( )ABCD2016【难度】【答案】B【解析】根据相反数的概念,的相反数为,故选B【总结】考查相反数的概念【例3】 (宝山区、嘉定区二模第1题)的倒数是( )AB2CD【难度】【答案】D【解析】根据倒数

14、的概念,的倒数为,故选D【总结】考查倒数的概念【例4】 (黄浦区二模第1题)下列分数中,可以化为有限小数的是( )ABCD【难度】【答案】C【解析】一个最简分数,分母中只含有2或5的因数,这个分数可化作有限小数,A、B都是最简分数,不满足条件;,可知C选项满足要求【总结】考查可化作有限小数的分数,注意前提是最简分数【例5】 (松江区二模第1题)下列各数是无理数的是( )ABCD16【难度】【答案】B【解析】根据无理数的概念,无理数是无限不循环小数,是开方开不尽的数,是无理数【总结】考查无理数的概念和区分【例6】 (黄浦区二模第1题)的整数部分是( )A0B1C2D3【难度】【答案】B【解析】,

15、可知其整数部分为1,故选B【总结】考查无理数的大致范围的确定【例7】 (1)(浦东新区二模第7题)计算:_(2)(黄浦区二模第7题)计算:_(3)(虹口区二模第7题)当时,的值为_【难度】【答案】(1);(2)2;(3)2【解析】(1);(2);(3)【总结】考查有理数去绝对值的计算【例8】 (1)(长宁区、金山区二模第7题)计算:_(2)(静安区二模第7题)计算:_(3)(闵行区二模第7题)计算:_【难度】【答案】(1);(2);(3)4【解析】(1);(2);(3)【总结】考查负指数幂的乘方运算【例9】 (闸北区二模第2题)的值为( )A2BCD不存在【难度】【答案】A【解析】表示4的算术

16、平方根,即为2,故选A【总结】考查开方的意义【例10】 (杨浦区二模第1题)下列等式成立的是( )ABCD【难度】【答案】C【解析】表示4的算术平方根,即为2,A错误;是有理数,是无限循环小数,是无理数,是无限不循环小数,不可能相等,B错误;C表示分数指数幂,正确;D要根据与0的大小关系分类讨论,D错误;故选C【总结】考查与实数相关的计算【例11】 (闸北区二模第1题)的立方根是( )A2BCD【难度】【答案】B【解析】根据,可知,故选B【总结】考查有理数的立方根,注意立方根只有一个【例12】 (普陀区二模第9题)计算:=_【难度】【答案】【解析】【总结】考查简单的无理数计算法则【例13】 (

17、徐汇区二模第2题)实数n、m是连续整数,如果,那么的值是( )A7B9C11D13【难度】【答案】C【解析】,即,可知,得,故选C【总结】考查无理数范围的大致确定【例14】 (静安区二模第1题)下列各数中,与相等的是( )ABCD3【难度】【答案】A【解析】,故选A【总结】考查分数指数幂的计算【例15】 (1)(普陀区二模第1题)据统计,2015年上海市全年接待国际旅游入境者共80016000人次,80016000用科学记数法表示是( )ABCD(2)(宝山区、嘉定区二模第7题)据统计,今年上海“樱花节”活动期间顾村公园入园赏樱人数约312万人次,用科学记数法可表示为_人次【难度】【答案】(1

18、)B;(2)【解析】(1)根据科学计数法的表示方法,科学计数法的次数为首位后面所有整数部分的个数,可知本题次数为7次,故选B;(2)万即为,可知312万【总结】考查科学计数法的表示方法【例16】 (1)(松江区二模第19题)计算:(2)(崇明县二模第19题)计算:【难度】【答案】(1)11;(2)【解析】(1)原式;(2) 原式【总结】考查实数的四则混合计算【例17】 (1)(长宁区、金山区二模第19题)计算:(2)(闸北区二模第19题)计算:(3)(杨浦区二模第19题)计算:【难度】【答案】(1);(2);(3)【解析】(1)原式;(2)原式;(3) 原式【总结】考查实数和特殊角的锐角三角比

19、结合的四则混合计算模块二:式与运算知识精讲一、 代数式1、 代数式有关概念:用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式单独一个数或一个字母也是代数式如:、0、等二、 整式1、 整式概念:单项式和多项式统称为整式单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或者字母也叫做单项式)如:代数式、2、,它们都是单项式单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数单项式的系数:单项式中的数字因数叫做这个单项式的系数多项式:由几个单项式的和组成的代数式叫做多项式多项式的次数:多项式中次数最高项的次数就是这个多项式的次数2、 整式加减,乘除

20、,乘方运算:(1)加减运算:合并同类项同类项:所含的字母相同,并且相同字母的指数也相同的单项式叫做同类项几个常数项也叫同类项(所含字母相同;相同字母的次数也相同)(2)乘法,除法,幂的乘方,积的乘方,3、 乘法公式:平方差公式:完全平方公式:4、 因式分解:把一个多项式化为几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式常用方法:提公因式法,公式法,十字相乘法,分组分解法三、 分式1、 分式有关概念及基本性质:(1)概念:一般地,如果两个整式A、B相除,即时,可以表示为如果B中含有字母,那么叫做分式A叫做分式的分子,B叫做分式的分母(2)分式有意义、无意义的条件:分式有意

21、义的条件是:;分式无意义的条件是:(3)分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变用式子表示是:,其中M、N为整式,且,2、 分式加减,乘除,乘除运算3、 分数指数幂,负指数幂及有关运算:分数指数幂:(,m、n为正整数,)(,m、n为正整数,)负指数幂:(,m为正整数)四、 二次根式1、 二次根式有关概念:形如()的式子叫做二次根式(1)满足下列两个条件的二次根式叫做最简二次根式被开方数中各因式的指数都为1;被开方数不含分母(2)同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,则这几个二次根式叫做同类二次根式2、 二次根式的性质及运算:(

22、1)();(2);(3)(,);(4)(,)例题解析【例18】 (闵行区二模第1题)如果单项式是六次单项式,那么n的值取( )A6B5C4D3【难度】【答案】D【解析】根据单项式的次数的概念,可得,得,故选D【总结】考查单项式的次数的概念,注意不要遗漏1次【例19】 (金山区二模第2题)下列代数式中是二次二项式的是( )ABCD【难度】【答案】A【解析】二次二项式首先是整式,B、D错误;C是三次二项式,选A【总结】考查多项式的次数和项数的相关概念【例20】 (崇明县二模第7题)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款_元【难度】【答案】【解析】根据总价=单价数量,可知总花费为元,

23、注意加上括号【总结】考查代数式的表示,注意一定要加上括号【例21】 (静安区、青浦区二模第2题)某公司三月份的产值为a万元,比二月份增长了m%,那么二月份的产值(单位:万元)为( )ABCD【难度】【答案】C【解析】设二月份产值为万元,则有,解得:,故选C【总结】考查分数中的单位“1”应用问题,可用设未知数进行求解计算【例22】 (奉贤区二模第2题)若x= 2,y=,那么代数式的值是( )A0B1C2D4【难度】【答案】B【解析】,故选B【总结】考查完全平方公式的应用,简化计算【例23】 (静安区二模第8题)下列计算结果正确的是( )ABCD【难度】【答案】C【解析】对A选项,同底数幂的的乘法

24、运算,A错误;对B选项,幂的乘方运算,B错误;对C选项,积的乘方运算,C正确;对D选项,完全平方公式,D错误;故选C【总结】考查幂的运算【例24】 (1)(闸北区二模第7题)计算:=_(2)(徐汇区二模第7题)计算:_(3)(徐汇区二模第8题)计算:_(4)(长宁区、金山区二模第8题)计算:=_【难度】【答案】(1);(2);(3);(4)【解析】(1);(2);(3) ;(4)【总结】考查幂的运算和整式的乘法计算【例25】 (1)(闸北区二模第8题)分解因式:=_(2)(长宁区、金山区二模第8题)分解因式:_(3)(普陀区二模第7题)分解因式:_(4)(奉贤区二模第8题)分解因式:=_【难度

25、】【答案】(1);(2);(3);(4)【解析】(1)提公因式法:;(2)公式法,平方差公式:;(3)先提公因式,后用平方差:;(4)十字相乘法:【总结】考查整式的因式分解,注意分解彻底和方法的合理选择【例26】 (闸北区二模第1题)下列代数式中,属于分式的是( )ABCD【难度】【答案】C【解析】根据分式的概念,分母含有未知数的代数式是分式,可知选C【总结】考查分式的概念【例27】 (静安区二模第8题)如果分式的值为零,那么的值为_【难度】【答案】2【解析】分式值为0,则有,解得:【总结】考查分式值为0的条件,注意分母一定不能为0【例28】 (1)(杨浦区二模第7题)计算:_(2)(闸北区二

26、模第9题)化简分式:=_【难度】【答案】(1);(2)【解析】(1)原式;(2)原式【总结】考查分式的化简和加减计算【例29】 (松江区二模第2题)下列式子中,属于最简二次根式的是( )ABCD【难度】【答案】D【解析】根号中不含有开方开的尽的数或字母的式子是最简二次根式,且不能含有分母,可知A、B、C都不是最简二次根式,选D【总结】考查最简二次根式的概念【例30】 (奉贤区二模第7题)化简:=_【难度】【答案】【解析】【总结】考查二次根式的化简计算【例31】 (长宁区、金山区二模第1题)在下列二次根式中,与是同类二次根式的是( )ABCD【难度】【答案】C【解析】根据同类二次根式的概念,被开

27、方数相同的两个最简二次根式是同类二次根式,A选项被开方数是,不是同类二次根式;,与是同类二次根式,故选C【总结】考查同类二次根式的概念,注意是化成最简二次根式以后【例32】 (1)(杨浦区二模第7题)写出的一个有理化因式:_(2)(闵行区二模第2题)在下列各式中,二次根式的有理化因式是( )ABCD【难度】【答案】(1)答案不唯一,例:;(2)B【解析】根据有理化因式的概念,两个含有二次根式的非零代数式相乘,积不含有根号的两个式子互为有理化因式,可知(1)答案不唯一,一般改变式子各项中间的符号,即选择,根据平方差公式,可知积不含有根号,可知两式互为有理化因式;(2)类型选择这个根式的倍数,故选

28、B【总结】考查有理化因式的概念【例33】 (浦东新区二模第2题)如果最简二次根式与是同类二次根式,那么x的值是( )AB0C1D2【难度】【答案】C【解析】根据同类二次根式的概念,可知,解得:,故选C【总结】考查根据同类二次根式的概念求解未知数的值【例34】 (闵行区二模第1题)在实数范围内分解因式:_【难度】【答案】【解析】【总结】考查在实数范围内分解因式,在方程有实数根的前提下可在实数范围分解因式,即【例35】 (黄浦区二模第19题)化简求值:,其中【难度】【答案】化简结果为,代值计算得:【解析】化简分式,原式,将代入,即得【总结】考查分式的化简和代值计算【例36】 (静安区二模第19题)

29、先化简,再求值:,其中,【难度】【答案】化简结果,代值计算得【解析】化简分式,原式,将,代入,即得【总结】考查分式的化简和代值计算【例37】 (宝山区、嘉定区二模第19题)化简,再求值:,其中【难度】【答案】化简结果,代值计算得【解析】化简分式,原式,将代入,即得【总结】考查分式的化简和代值计算随堂检测【习题1】 下列分数中,能化为有限小数的是( )ABCD【难度】【答案】C【解析】一个最简分数,分母中只含有2或5的因数,这个分数可化作有限小数,D是最简分数,不满足条件;,可知C选项满足要求【总结】考查可化作有限小数的分数,注意前提是最简分数【习题2】 (闵行区二模第1题)下列各数中,是无理数

30、的是( )ABCD【难度】【答案】B【解析】根据无理数的概念,无理数是无限不循环小数,是无理数,也是无理数【总结】考查无理数的概念和区分【习题3】 (虹口区二模第1题)计算的结果是( )A6 B C8 D【难度】【答案】D【解析】,故选D【总结】考查乘方的意义和相关计算【习题4】 (1)(长宁区、金山区二模第7题)计算: =_(2)(闸北区二模第7题)计算:_(3)(闵行区二模第7题)计算:_(4)(浦东新区二模第7题)计算:=_【难度】【答案】(1);(2);(3)2;(4)【解析】(1);(2);(3);(4)【总结】考查分数指数幂和负数指数幂的相关计算【习题5】 (闸北区二模第8题)用科

31、学记数法表示:3402000 = _【难度】【答案】【解析】根据科学计数法的表示方法,科学计数法的次数为首位后面所有整数部分的个数,可知本题次数为6次,即【总结】考查科学计数法的表示方法【习题6】 (浦东新区二模第1题)下列等式成立的是( )ABCD【难度】【答案】D【解析】对A选项,负指数幂,A错误;对B选项,同底数幂的除法,B错误;对C选项,幂的乘方,C错误;对D选项,任何非零数的零次幂都等于1,D正确【总结】考查幂的相关计算【习题7】 (浦东新区二模第2题)下列各整式中,次数为5次的单项式是( )A B C D【难度】【答案】A【解析】C、D是多项式,错误;根据单项式次数的概念,所以字母

32、的指数和是单项式的次数,A选项次数为,B选项次数为,故选A【总结】考查单项式的次数的概念【习题8】 (黄浦区二模第2题)下列计算中,正确的是( )ABCD【难度】【答案】D【解析】对A选项,幂的乘方,A错误;对B选项,同底数幂的除法,B错误;对C选项,合并同类项计算,C错误;对D选项,合并同类项计算,D正确【总结】考查幂的乘法和合并同类项的相关计算【习题9】 (奉贤区二模第7题)用代数式表示:a的5倍与b的的差:_【难度】【答案】【解析】略【总结】考查代数式的表示,注意连接词表示的先后顺序【习题10】 (1)(宝山区、嘉定区二模第8题)计算:_(2)(黄浦区二模第9题)计算:_【难度】【答案】

33、(1);(2)【解析】(1)原式;(2)【总结】考查整式的乘法计算和乘法公式的应用【习题11】 (1)(奉贤区二模第8题)因式分解:=_(2)(黄浦区二模第8题)因式分解:_(3)(金山区二模第9题)因式分解:_(4)(静安区、青浦区二模第8题)分解因式:_【难度】【答案】(1);(2);(3);(4)【解析】(1)提公因式法:;(2)先提公因式,后完全平方:;(3)先提公因式,后用平方差:;(4)公式法,完全平方公式:【总结】考查整式的因式分解,注意分解彻底和方法的合理选择【习题12】 (黄浦区二模第3题)下列根式中,与互为同类二次根式的是( )ABCD【难度】【答案】C【解析】根据同类二次

34、根式的概念,被开方数相同的两个最简二次根式是同类二次根式,故选C【总结】考查同类二次根式的概念,注意是化成最简二次根式以后【习题13】 (闵行区二模第2题)二次根式的有理化因式是( )ABCD【难度】【答案】C【解析】根据有理化因式的概念,两个含有二次根式的非零代数式相乘,积不含有根号的两个式子互为有理化因式,可知答案不唯一,一般改变式子各项中间的符号,即选择,根据平方差公式,可知积不含有根号,故选C【总结】考查有理化因式的概念【习题14】 (1)(黄浦区二模第19题)计算:(2)(徐汇区二模第19题)计算:(3)(普陀区二模第19题)计算:【难度】【答案】(1)1;(2);(3)【解析】(1

35、)原式;(2)原式;(3)原式【总结】考查实数和特殊角的锐角三角比结合的四则混合计算【习题15】 (金山区二模第19题)化简:【难度】【答案】【解析】原式【总结】考查分式的化简【习题16】 (宝山区、嘉定区二模第19题)先化简,再求值:,其中【难度】【答案】化简结果,代值计算得【解析】化简分式,原式,将代入,即得【总结】考查分式的化简和代值计算课后作业【作业1】 (宝山区、嘉定区二模第1题)下列实数中,属无理数的是( )ABCD【难度】【答案】C【解析】A、B都是分数,是有理数,也是有理数,是开方开不尽的数,是无理数,故选C【总结】考查实数的分类和无理数的相关概念【作业2】 (1)(宝山区、嘉

36、定区二模第7题)计算:_(2)(金山区二模第7题)计算:_(3)(静安区、黄浦区二模第7题)计算:_【难度】【答案】(1);(2)0;(3)【解析】(1);(2);(3)【总结】考查实数的计算【作业3】 (普陀区二模第2题)下列说法中,不正确的是( )A10的立方根是B是4的一个平方根C的平方根是D0.01的算术平方根是0.1【难度】【答案】C【解析】的平方根有两个,是,故选C,注意平方根和算术平方根的差别【总结】考查数的平方根、算术平方根的差别和联系【作业4】 (崇明县二模第2题)下列运算中,正确的是( )ABCD【难度】【答案】D【解析】对A选项,A错误;对B选项,B错误;对C选项,C错误

37、;对D选项,D正确,故选D【总结】考查分数指数幂的负数指数幂的相关计算【作业5】 (崇明县二模第1题)下列计算中,正确的是( )ABCD【难度】【答案】D【解析】对A选项,合并同类项计算,A错误;对B选项,同底数幂的乘法,B错误;对C选项,幂的乘方,C错误;对D选项,幂的乘方运算,D正确【总结】考查幂的相关计算,注意法则的准确运用【作业6】 (1)(松江区二模第7题)因式分解:=_(2)(崇明县二模第8题)分解因式:_(3)(宝山区、嘉定区二模第8题)因式分解:=_(4)(闵行区二模第9题)在实数范围内分解因式:_【难度】【答案】(1);(2);(3);(4)【解析】(1)提公因式法:;(2)

38、十字相乘法:;(3)先提公因式,后用平方差:;(4)提公因式法:【总结】考查整式的因式分解,注意分解彻底和方法的合理选择【作业7】 (虹口区二模第7题)据报道,截止2015年3月,某市网民规模达5180000人请将数据5180000用科学记数法表示为_【难度】【答案】【解析】根据科学计数法的表示方法,科学计数法的次数为首位后面所有整数部分的个数,可知本题次数为6次,即【总结】考查科学计数法的表示方法【作业8】 (闸北区二模第2题)下列属于最简二次根式的是( )ABCD【难度】【答案】A【解析】根号中不含有开方开的尽的数或字母的式子是最简二次根式,且不能含有分母,可知B、C、D都不是最简二次根式

39、,故选A【总结】考查最简二次根式的概念【作业9】 如果分式的值为,那么的值为_【难度】【答案】5【解析】分式值为0,则有,解得:【总结】考查分式值为0的条件,注意分母一定不能为0【作业10】 (黄浦区二模第9题)计算:_【难度】【答案】【解析】原式【总结】考查异分母分式的加减计算,注意先通分再计算【作业11】 (虹口区二模第2题)下列代数式中,的一个有理化因式是( )ABCD【难度】【答案】D【解析】根据有理化因式的概念,两个含有二次根式的非零代数式相乘,积不含有根号的两个式子互为有理化因式,可知答案不唯一,一般改变式子各项中间的符号,即选择,根据平方差公式,可知积不含根号,故选D【总结】考查

40、有理化因式的概念【作业12】 (1)(闵行区二模第19题)计算:(2)(浦东新区二模第19题)计算:(3)(浦东新区二模第19题)计算:(4)(闸北区二模第19题)计算:【难度】【答案】(1)4;(2);(3);(4)【解析】(1)原式;(2)原式;(3)原式;(4)原式【总结】考查实数和特殊角的锐角三角比结合的四则混合计算【作业13】 (虹口区二模第19题)先化简,再求值:,其中【难度】【答案】化简结果,代值计算得【解析】化简分式,原式,将代入,即得【总结】考查分式的化简和代值计算【作业14】 (长宁区、金山区二模第19题)先化简,再求代数式的值:,其中【难度】【答案】化简结果,代值计算得【解析】化简分式,原式,将代入,即得