ImageVerifierCode 换一换
格式:DOCX , 页数:48 ,大小:2.13MB ,
资源ID:229022      下载积分:50 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-229022.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年广东省广州市七年级上数学期末复习手册)为本站会员(热***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2022年广东省广州市七年级上数学期末复习手册

1、 七年级上学期期末复习手册第一章:有理数【知识框架】类型一、有理数相关概念【概念1】有理数例1把下列各数填在相应的大括号内:,正有理数: ;整数: ;负分数: 非负整数: 【练习】 把下列各数分别填入相应的集合:0,7, ,4.8,8,15,整数集合 ;分数集合 ;非负数集合 ;负数集合 【概念2】数轴例21厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A和点B刚好对着直尺上的刻度2和刻度8(1)写出点A和点B表示的数;(2)写出与点B距离为9.5厘米的直尺左端点C表示的数;(3)在数轴上有一点D,其到A的距离为2,到B的距离为4,求点D关于原点点对称的点表示的数【练习】 如图,在数轴

2、上,点A、B分别表示数2、2x+6(1)若x2,则点A、B间的距离是多少?(2)若点B在点A的右侧: 求x的取值范围; 表示数x+4的点应落在()(填序号)A点A左边B线段AB上C点B右边【概念3】相反数例3已知a,b为有理数,它们在数轴上对应点的位置如图所示(1)在数轴上标出表示a,b的对应点的位置;(2)试把a,b,0,a,b这5个有理数按从小到大的顺序用“”连接起来【练习】1、下列说法中错误的是( )A.在一个数前面添加一个“-”号,就变成原数的相反数B.与2.2互为相反数 C.的相反数是-0.3D.如果两个数互为相反数,则它们的相反数也互为相反数2、已知互为相反数,则 3、已知:a是(

3、5)的相反数,b比最小的正整数大4,c是最大的负整数计算:3a+3b+c的值是多少?4、有理数、在数轴上对应点如图所示:在数轴上表示、;把、0、这五个数从大到小用“”号连接起来【概念4】绝对值例4先阅读下列解题过程,然后解答后面两个问题解方程:解:当时,原方程可化为,解得;当时,原方程可化为,解得所以原方程的解是或(1)利用上述方法解方程:(2)当满足什么条件时,关于的方程,无解;只有一个解;有两个解【练习】 如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足以下关系式:,(1)a=_;c=_;(2)若将数轴折叠,使得A点与B点重合,则点C与数_表示的点重合;(3)若点P为数

4、轴上一动点,其对应的数为x,当代数式取得最小值时,此时x=_,最小值为_【概念5】科学记数法和近似数例5.莹莹家里今年种植的猕猴桃获得大丰收,她家卖给了一位客户10箱猕猴桃莹莹帮助爸爸记账,每箱猕猴桃的标准重量为5千克,超过标准重量的部分记为“+”,不足标准重量的部分记为“-”,莹莹的记录如下(单位:千克):+0.15,+0.25,-0.2,+0.1,-0.2,+0.3,-0.2,0,+0.05,-0.15(1)计算这10箱猕猴桃的总重量为多少千克?(2)如果猕猴桃的价格为12元/千克,计算莹莹家出售这10箱猕猴桃共收入多少元?(精确到1元)(3)若都用这种纸箱装,莹莹家的猕猴桃共能装500箱

5、,按照12元/千克的价格,把猕猴桃全部出售,莹莹家大约能收入多少元?(精确到万位,用科学记数法表示)【练习】1、一只草履虫每小时大约能够形成60个食物泡,每个食物泡中大约含有30个细菌,那么,一只草履虫每天大约能够吞食多少个细菌?100只草履虫呢?(用科学记数法表示)2、按照要求,用四舍五入法对下列各数取近似值:(1)0.76589(精确到千分位);(2)289.91(精确到个位);(3)(精确到千位)类型二、有理数的运算【运算一】有理数加减混合运算例6.计算:【练习】 阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以当时,当时,根据以上阅读完成:(1)_;(2)计算:

6、【运算二】用简单方法进行有理数加减混合运算例7.计算(1) (2)【练习】计算:(1)(2)(3) (4)【运算三】有理数加减乘除乘方混合运算例8.计算(1)(2)【练习】计算:(1); (2)类型三、数学思想在本章中的应用【应用一】数形结合例9.如图,周长为2个单位长度的圆片上的一点A与数轴上的原点O重合,圆片沿数轴来回无滑动地滚动(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为_(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;当圆片结束第6次滚动时,点A一共滚动了多

7、少个单位长度?【练习】 如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示数2,已知点A是数轴上的点,请参照图示,完成下列问题:(1)如果点A表示数3,将点A向右移动7个单位长度,那么终点表示的数是_;(2)如果点A表示数3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是_;(3)如果点A表示数a,将点A向左移动m(m0)个单位长度,再向右移动n(n0)个单位长度,那么终点表示数是多少(用含a、m、n的式子表示)?【应用二】分类讨论例10.对于平面内的两点M、N,若直线MN上存在点P,使得MP=NP成立,则称点P为点M、N

8、的“和谐点”,但点P不是点N、M的“和谐点”.(1)如图1,点A、B在直线l上,点C、D是线段AB的三等分点,则 是点A、B的“和谐点”(填“点C或“点D”);(2)如图2,已知点E、F、G在数轴上,点E表示数2,点F表示数1,且点F是点E、G的“和谐点”,求点G表示的数;(3)如图3,数轴上的点P表示数5,点M从原点O出发,以每秒3个单位的速度向左运动,点N从点P出发,以每秒10个单位的速度向左运动,点M、N同时出发.在M、N、P三点中,若点M是另两个点的“和谐点”,则OM= .【练习】 在数轴上有A,B,C三点,其中点A所对应的数是a,点B所对应的数是2,点C所对应的数是c(1)若A,B两

9、点的距离小于4,求满足条件的整数a的值;(2)若C,B两点的距离小于3,求满足条件的c的范围【应用三】方程思想例11.如图,在数轴上点A表示的数是,点B在点A的右侧,且到点A的距离是24,点C在点A与点B之间,且(1)点B表示的数是 ,点C表示的数是 ;(2)若点P从点A出发,沿数轴以每秒3个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q相遇?当t为何值时,点P与点Q间的距离为9个单位长度?【真题练习】一选择题(共14小题)1(2021秋番禺区期末)番禺全区常住人口为2658400人,265

10、8400用科学记数法表示为()A0.26584107B2.6584106C2.6584107D26.5841052(2021秋海珠区期末)某市地铁18号线定位为南北快线,实现了该市中心城区与某新区的快速轨道交通联系,18号线日均客流量约为81400人,将数81400用科学记数法表示,可记为()A0.814105B8.14104C814102D8.141033(2021秋天河区期末)广东省2021年上半年GDP总量约为50500亿元,“50500亿”这个数用科学记数法表示为()A0.5051013B5.051012C5.051011D50.510114(2021秋越秀区期末)据猫眼实时数据显示,

11、截至2021年11月3日,电影长津湖累计票房正式突破55.2亿元票房数字用科学记数法表示是()元A55.2108B5.52109C55.2109D5.5210105(2021秋花都区期末)2021年5月22日,我国自主研发的“祝融号”火星车成功到达火星表面已知火星与地球的最近距离约为55000000千米,数据55000000用科学记数法表示为()A55106B5.5107C5.5108D0.551086(2021秋越秀区期末)|1|,(1)2,(1)3这三个数中,等于1的数有()A0个B1个C2个D3个7(2021秋天河区期末)下列计算中,正确的是()A|2|2B(1)22C7+34D6(2)

12、38(2021秋海珠区期末)在1、8、0、2这四个数中,最小的数是()A1B8C0D29(2021秋越秀区期末)如果300元表示亏本300元,那么+500元表示()A亏本500元B盈利500元C亏本800元D盈利800元10(2021秋天河区期末)下列各数中,最小的数是()A1BC3.14D011(2021秋番禺区期末)四个有理数2、1、0、1,其中最小的是()A1B0C1D212(2021秋番禺区期末)2的相反数是()A2B2CD13(2021秋天河区期末)8的相反数是()AB8C8D14(2021秋花都区期末)2的倒数是()A2B2CD二填空题(共12小题)15(2021秋黄埔区期末)若与

13、x互为相反数,则x 16(2021秋黄埔区期末)已知|x|2,|y|1,且|xy|yx,则xy 17(2021秋花都区期末)如图,数轴上的点A表示有理数a,若点A到原点O的距离大于1,则|a+1| 18(2021秋白云区期末)用四舍五入法对下列各数取近似值:0.00536 (精确到0.001)19(2021秋花都区期末)如果向东走35米记作+35米,那么向西走50米记作 米20(2021秋荔湾区期末)在2021年的“双11”活动中,某平台的交易总额为5403亿元,将数字5403亿用科学记数法表示为 21(2021秋荔湾区期末)如果收入20元记作+20元,那么支出15元记作 元22(2021秋荔

14、湾区期末)已知a,b为有理数,如果规定一种新的运算“”,规定:ab2b3a,例如:122231431,计算:(32)5 23(2021秋越秀区期末)用四舍五入法取近似数:2.7682 (精确到0.01)24(2022春越秀区校级期末)的相反数是 25(2021秋海珠区期末)的相反数是 26(2021秋白云区期末)比较大小:3 2(用“”、“”或“”填空)三解答题(共13小题)1(2021秋白云区期末)已知a,b互为倒数,x,y互为相反数(1)求式子2x+3ab+2y的值;(2)若2b4,by8,求式子72ayxb的值2(2021秋白云区期末)计算:(1)18+(2)(1)2; (2)5.4()

15、3(2021秋白云区期末)计算:4(2021秋番禺区期末)计算下列各式的值:(1); (2)5(2021秋花都区期末)计算:(1)(11)+(5)+14; (2)2(1)202120(4)6(2021秋荔湾区期末)计算:(1)12(5)+(11)18; (2)(22)+(22)+|3|(1)20227(2021秋天河区期末)计算:4+(2)35(28)48(2021秋黄埔区期末)计算:4+(2)35(0.28)49(2021秋越秀区期末)计算:(1)7+()3(1.5) (2)235(20)(4)10(2021秋番禺区期末)测量一幢楼的高度,七次测得的数据分别是:79.8m,80.6m,80.

16、4m,79.1m,80.3m,79.3m,80.5m(1)以80为标准,用正数表示超出部分,用负数表示不足部分,写出七次测得数据对应的数;(2)求这七次测量的平均值;(3)写出最接近平均值的测量数据,并说明理由11(2021秋海珠区期末)某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正数表示,不足的部分用负数表示,记录如表:与标准质量的差值(克)520136袋数(袋)245513(1)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?(2)若该食品的包装袋上标有产品合格要求为“净重3502克”,则这批样品的合格率为多少?12(2021秋花都区期末)

17、某公司5天内货品进出仓库的吨数如下:+23,30,16,35,33(其中“+”表示进库,“”表示出库)(1)经过这5天,仓库管理员结算后确定仓库里还有货品509吨,那么5天前仓库里存有货品多少吨?(2)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?13(2021秋黄埔区期末)数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB4,且OB3OA点A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x(1)a ,b ,并在数轴上面标出A、B两点;(2)若PA2PB,求x的值;(3)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速

18、度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒请问在运动过程中,3PBPA的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值第二章:整式加减【知识框架】考点一:整式的基本概念:1. 下列运算正确的是()A(a1)a1 B2(a1)2a1Ca3a2a D5x23x22x22.下列判断中,错误的是()A1aab是二次三项式 Ba2b2c是单项式C是多项式 DR2中,系数是3.如果单项式xaby3与5x2yb的和仍是单项式,则|ab|的值为()A4 B3 C2 D14. 已知多项式x|m|(m2)x10是二次三项式(m为常数),则m的值为_5. 若xy3与2xm

19、2yn5是同类项,则nm_.6. 已知(a2)x2y|a|1是关于x,y的五次单项式,求(a1)2的值考点二:整式的加减计算1. 下列各式去括号正确的是()Ax2(xy2z)x2xy2z Bx(2x3y1)x2x3y1C3x5x(x1)3x5xx1 D(x1)(x22)x1x222.某同学计算一个多项式加上xy3yz2xz时,误认为减去此式,计算出的结果为xy2yz3xz,则正确结果是()A2xy5yzxz B3xy8yzxz Cyz5xz D3xy8yzxz3.已知多项式x23kxyy29xy10中不含xy项,则k()A0 B2 C3 D44.若多项式3(a22abb2)(a2mab2b2)

20、中不含有ab项,则m_5. 有理数b在数轴上对应点的位置如图所示,化简:|3b|2|2b|b3|_6. 已知A2x33x29,B5x39x27x1.(1)求B3A;(2)当x5时,求B3A的值7. 先化简,再求值:2(x2yxy)3(x2yxy)4x2y,其中x1,y1.考点三:整式加减的实际应用1、把四张形状、大小完全相同的小长方形卡片(如图)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是()A4m cm B4n cm C2(mn)cm D4(mn)cm2. 一个三位数,百位数字是3,十位数字和

21、个位数字组成的两位数是b,用式子表示这个三位数是_3.某音像社出租光盘的收费方法如下:每张光盘在出租后的前两天每天收0.8元,以后每天收0.5元,那么一张光盘出租后n天(n是大于2的自然数)应收租金_元,10天应收租金_元4.观察如图摆放的三角形,则图中的三角形有_个,图中的三角形有_个5. 如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,每个A区都是边长为a m的正方形,C区是边长为c m的正方形(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a40,c10,求整个长方形运动场的面积考点四:整式加减的综合际应用如图

22、所示的图案是用长度相同的火柴棒按一定规律拼搭而成,图需8根火柴棒,图需15根火柴棒,按此规律,图需火柴棒()A(7n2)根 B(7n6)根 C(7n4)根 D(7n1)根2. 若mnm3,则2mn3m5mn10_3. 如图是一个运算程序示意图若开始输入x的值为625,则第2 022次输出的结果为_4. 有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点、表示数b的点与原点的距离相等用“”“”或“”填空:b_0,ab_0,ac_0,bc_0;(2)|b1|a1|_;(3)化简:|ab|ac|b|bc|.5. 用“”定义一种新运算:对于任意有理数a和b,规定abab22aba.例如:1

23、3132213116.(1)求(2)3的值;(2)若8,求c的值;(3)若2xm,3n(其中x为有理数),试比较m,n的大小【真题练习】一选择题(共14小题)1(2021秋番禺区期末)多项式a2a+2是()A二次二项式B二次三项式C三次二项式D三次三项式2(2021秋黄埔区期末)已知amb2与是同类项,则mn()A2B1C1D33(2021秋白云区期末)化简:3(ab)+2(ab)6(ba)()AbaB11a11bC2a2bD6a6b4(2021秋花都区期末)若2xay3与3x2yb是同类项,则a+b()A5B1C5D15(2021秋海珠区期末)下列运算正确的是()A2x3x31B3xyxy2

24、xyC(xy)xyD2a+3b5ab6(2021秋越秀区期末)若单项式10x9y与7x3myn是同类项,则()Am3,n1Bm2,n1Cm3,n0Dm1,n37(2021秋白云区期末)已知2anbn与3a3bm+2是同类项,则m+n()A3B4C4D38(2021秋花都区期末)下列去括号正确的是()A(a1)a+1B(a+1)a+1C+(a1)+a+1D+(a+1)+a19(2021秋天河区期末)一个两位数个位上的数是1,十位上的数是x,如果把1与x对调,新两位数与原两位数的和不可能是()A66B99C110D12110(2021秋花都区期末)下列运算错误的是()Aa3+a32a3B2ab+3

25、ab5abC4a2a23a2D3ab2ab111(2021秋荔湾区期末)关于单项式,下列说法中正确的是()A系数是B次数是4C系数是D次数是512(2021秋荔湾区期末)若(a2)x3+x2(b+1)+1是关于x的二次二项式,则a,b的值可以是()A0,0B0,1C2,0D2,113(2021秋番禺区期末)下列计算正确的是()A2mm2B2m+n2mnC2m3+3m25m5 Dm3nnm3014(2021秋海珠区期末)若关于x、y的多项式3x2y4xy+2x+kxy+1中不含xy项,则k的值为()ABC4D4二填空题(共9小题)15(2021秋黄埔区期末)单项式3x2y3的系数是 ,次数是 1

26、6(2021秋白云区期末)列式表示“a的三分一与b的2倍的差”: 17(2021秋海珠区期末)某小区要打造一个长方形花圃,已知花圃的长为(a+2b)米,宽比长短b米,则花圃的周长为 米(请用含a、b的代数式表示)18(2021秋花都区期末)如图所示为一个数值运算程序,当输入大于1的正整数x时,输出的结果为8,则输入的x值为 19(2021秋花都区期末)化简:2xyxy 20(2021秋荔湾区期末)已知3x2my3和2x2yn是同类项,则式子mn的值是 21(2021秋天河区期末)单项式a2h的次数为 22(2021秋越秀区期末)当x2021时,ax3bx+5的值为1;则当x2021时,ax3b

27、x+5的值是 23(2021秋番禺区期末)写出一个与2x2y是同类项的单项式是 三解答题(共8小题)1(2021秋天河区期末)先化简,再求值:(5a23b)3(a22b),其中a,b2(2021秋花都区期末)先化简,再求值:4(13y+x2)3(x23y+2),其中x3,y43(2021秋越秀区期末)先化简下列各式,再求值:(1)(3x2y4xy2)(2x2y3x2),其中x1,y1;(2)3(x+y)25(x+y)+7(x+y)2+4(x+y),其中x+y14(2021秋荔湾区期末)已知a2+b23,ab2,求代数式(7a2+3ab+3b2)2(4a2+3ab+2b2)的值5(2021秋天河

28、区期末)定义一种新运算:对任意有理数a,b都有aba2b,例如:232234(1)求32的值;(2)化简并求值:(x2y)(x+2y),其中x32,y146(2021秋海珠区期末)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如表(注:水费按一个月结算一次):请根据价目表的内容解答下列问题:价目表每月用水量(m3)单价(元/m3)不超出26m3的部分3超出26m3不超出34m3的部分4超出34m3的部分7(1)填空:若该户居民1月份用水20立方米,则应收水费 元;若该户2月份用水30立方米,则应收水费 元;(2)若该户居民3月份用水a立方米

29、(其中a34),则应收水费多少元?(结果用含a的代数式表示)(3)若该户居民4月份的平均水价为3.8元/m3,求该户4月份用水量是多少立方米?第三章:一元一次方程【知识框架】类型一、一元一次方程的概念1已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值【练习】已知是关于x的一元一次方程,求m的值类型二、一元一次方程的解法例2解下列一元一次方程:(1);(2)【练习】解方程:(1)(2);(3).例3如果方程 的解与关于x的方程4x(3a1)=6x2a1的解相同,求代数式a2a1的值【练习】已知关于的一元一次方程的解为,那

30、么关于的一元一次方程的解=_类型三、一元一次方程的应用例4某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【练习】1、某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?2、为实施乡村振兴战略,解决某山区老百姓出行难的

31、问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?例5:如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB2BC,设点A,B,C所对应数的和是m(1)若点C为原点,BC1,则点A,B所对应的数分别为 , ,m的值为 ;(2)若点B为原点,AC6,求m的值(3)若原点O到点C的距离为8,且OCAB,求m的值【练习】1、将连续的奇数1,3,5,7,9,排成如

32、图所示的数阵.用框框住5个数.(1)将此框上、下、左、右平移,可以框住另外5个数,若中间的数为a,用代数式表示此框中由小到大的另4个数,并求这五个数的和.(2)此框中的5个数的和能等于2020吗?若能,请写出这5个数;若不能,请说明理由.2、孙子算经中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,绳木各长几何?”意思是:用一根绳子去量一根长木,绳子还余4.5尺,将绳子对折再量长木,长木还剩余1尺,问绳子、长木各长多少尺?请你算一算【真题练习】一选择题(共18小题)1(2021秋荔湾区期末)下列方程为一元一次方程的是()A+y2Bx+2y6Cx23xDy802

33、(2021秋海珠区期末)下列方程中是一元一次方程的是()A2x3yB7x+56(x1)CD3(2021秋黄埔区期末)比a的3倍大5的数等于a的4倍,则下列等式正确的是()A3a54aB3a+54aC53a4aD3(a+5)4a4(2021秋白云区期末)下列方程中,x1是方程()的解A2x+610B2x+910C3x+610D3x+9125(2021秋花都区期末)下列方程中,解为x2的是()Ax+20Bx20C2x+10D2x106(2021秋荔湾区期末)已知x1是关于x的方程x7m2x+6的解,则m的值是()A1B1C7D77(2021秋黄埔区期末)下列是根据等式的性质进行变形,正确的是()A

34、若axay,则xyB若axb+x,则abC若xy,则x5y+5D若,则xy8(2021秋海珠区期末)解方程1,去分母,得()A1x33xB6x33xC6x+33xD1x+33x9(2021秋白云区期末)已知ab,则下列结论不一定成立的是()Aa+2b+2Ba2b2CambmD10(2021秋越秀区期末)若关于x的一元一次方程的解,比关于x的一元一次方程2(3x4m)15(xm)的解大15,则m()A2B1C0D111(2021秋天河区期末)若mn,则下列等式中错误的是()A4m4nB1+m1+nCD3m3+n12(2021秋荔湾区期末)下列说法:a一定是负数;3x29x1的常数项是1;倒数等于

35、它本身的数是1;若b2a,则关于x的方程ax+b0(a0)的解为x2;平方等于它本身的数是0或1,其中正确的个数是()A1个B2个C3个D4个13(2021秋番禺区期末)运用等式性质进行的变形,不正确的是()A如果ab,那么acbcB如果ab,那么a+cb+cC如果ab,那么acbcD如果acbc,那么ab14(2021秋荔湾区期末)一商家进行促销活动,某商品的优惠措施是“第二件商品打6折”现购买2件该商品,相当于这2件商品共打了()A7折B8折C7.5折D8.5折15(2021秋海珠区期末)某工厂用硬纸生产圆柱形茶叶筒已知该工厂有44名工人,每名工人每小时可以制作筒身50个或制作筒底120个

36、要求一个筒身配两个筒底,设应该分配x名工人制作筒身,其它工人制作筒底,使每小时制作出的筒身与筒底刚好配套,则可列方程为()A2120(44x)50xB250(44x)120xC120(44x)250xD120(44x)50x16(2021秋花都区期末)某中学的学生自己动手整修操场,七年级的学生说:“如果让我们单独工作,7.5小时能完成”;八年级的学生说:“如果让我们单独工作,5小时能完成”现两个年级学生一起工作1小时,剩下的部分再让七年级单独完成需x小时,可列方程()ABCD17(2021秋越秀区期末)现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子

37、,要使桌子和椅子刚好配套设用x立方米的木料做桌子,则依题意可列方程为()A4x5(90x)B5x4(90x)Cx4(90x)5D4x590x18(2021秋番禺区期末)一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A亏损20元B盈利30元C亏损50元D不盈不亏二填空题(共7小题)19(2021秋天河区期末)方程2x+53(x1)的解为 20(2021秋海珠区期末)已知x3是关于x的方程ax+2x90的解,则a的值为 21(2021秋越秀区期末)若x|m|102是关于x的一元一次方程,则m的值是 22(2021秋荔湾区期末)若3x12的值与2(1+x)的值互为相反数,则x的值为 23(2021秋番禺区期末)若x3是关于x的方程2x+a1的解,则a的值是 24(2022春海珠区期末)某校食堂有甲、乙、丙三种套餐,为了解哪种