ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:206KB ,
资源ID:225780      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-225780.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年北京市西城区十五校高一上期中数学试卷(含答案详解))为本站会员(狼****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年北京市西城区十五校高一上期中数学试卷(含答案详解)

1、2021-2022 学年北京市西城区十五校高一上期中数学试卷学年北京市西城区十五校高一上期中数学试卷 一、选择题(本大题共一、选择题(本大题共 10 小题,每小题小题,每小题 4 分,共分,共 40 分 )分 ) 1设集合 M1,0,1,Nx|x2x,则 MN( ) A1,0,1 B0,1 C1 D0 2设命题 p:xN,n23n+6,则 p 的否定为( ) AxN,n23n+6 BxN,n23n+6 CxN,n23n+6 DxN,n23n+6 3在下面四个等式运算中,正确的是( ) A3a2 Baa C2 D8 4函数 f(x)x2+2(a1)x+2 在区间(,4上是单调递减的,则实数 a

2、的取值范围是( ) Aa3 Ba3 Ca5 Da5 5若 f(1x),则 f(0)( ) A0 B C1 D1 6已知 f(x),若 f(x)3,则 x 的值是( ) A1 B1 或 C1,或 D 7设 a,b 是非零实数,若 ab,则下列不等式成立的是( ) Aa2b2 Bab2a2b C D 8已知函数 f(x)是 R 上的偶函数,当 x0 时,f(x)x1,则不等式 xf(x)0 的解集是( ) A (1,0)(1,+) B (,1)(0,1) C (,1)(1,+) D (1,1) 9若 a0,b0,则“ab1”是“a+b2”的( ) A充分不必要条件 B必要不充分条件 C充分必要条件

3、 D既不充分也不必要条件 10若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数” ,则函数解析式为 yx2+1,值域为1,3的同族函数有( ) A1 个 B2 个 C3 个 D4 个 二、填空题(本大题共二、填空题(本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分 )分 ) 11计算:27 12不等式 2x2x0 的解集为 13f(x)ax2+bx, (ab0) ,若 f(x1)f(x2) ,且 x1x2,则 f(x1+x2) 14设全集为 S,集合 A,BS,有下列四个命题: ABB; SBSA; (SB)A; (SA)B 其中是命题 AB 的充要

4、条件的命题序号是 三、解答题(本大题共三、解答题(本大题共 3 小题,共小题,共 40 分 )分 ) 15 (13 分)已知集合 AxR|x240,BxR|x1|3,求:AB,AB,RB 16 (13 分)已知函数 f(x)4x+ ()应用函数单调性的定义证明:函数 f(x)在区间,+)上单调递增; ()求 f(x)在区间1,3上的最大值与最小值 17 (14 分)近年来,某企业每年消耗电费约 24 万元,为了节能减排,决定安装一个可使用 15 年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为 0.5为了保证正常用

5、电,安装后采用太阳能和电能互补供电的模式假设在此模式下,安装后该企业每年消耗的电费 C(单位:万元)与安装的这种太阳能电池板的面积 x(单位:平方米)之间的函数关系是 C(x)(x0,k 为常数) 记 F 为该村安装这种太阳能供电设备的费用与该村 15 年共将消耗的电费之和 (1)试解释 C(0)的实际意义,并建立 F 关于 x 的函数关系式; (2)当 x 为多少平方米时,F 取得最小值?最小值是多少万元? 一、选择题(本大题共一、选择题(本大题共 3 小题,每小题小题,每小题 4 分,共分,共 12 分在每小题给出的四个选项中,只有一个选项正确 )分在每小题给出的四个选项中,只有一个选项正

6、确 ) 18函数 f(x)的最大值是( ) A B C D 19设函数 f(x),则不等式 f(x)f(1)的解集是( ) A (3,1)(3,+) B (3,1)(2,+) C (1,1)(3,+) D (,1)(1,3) 20函数 f(x)的图象如图所示,则下列结论成立的是( ) Aa0,b0,c0 Ba0,b0,c0 Ca0,b0,c0 Da0,b0,c0 二、填空题(本大题共二、填空题(本大题共 3 小题,每小题小题,每小题 4 分,共分,共 12 分 )分 ) 21函数的定义域为 22若二次函数 f(x)的图象关于 x2 对称,且 f(a)f(0)f(1) ,则实数 a 的取值范围是

7、 23对实数 a,b 定义运算“” :,设函数 f(x)(x22)(x1) ,xR,若函数 yf(x)c 的图象与 x 轴恰有两个公共点,则实数 c 的取值范围是 三、解答题(本大题共三、解答题(本大题共 2 小题,共小题,共 26 分 )分 ) 24 (13 分)已知函数 f(x)x2+(2+a)x+b,其中 a,bR ()当 a1,b4 时,求函数 f(x)的零点; ()当 b2a 时,解关于 x 的不等式 f(x)0; ()如果 f(x)2x+2 对任意实数 x 恒成立,证明:b2 25(13 分) 已知集合 Aa1, a2, , an, aiR, i1, 2, , n, 并且 n2 定

8、义(例如:) ()若 A1,2,3,4,5,6,7,8,9,10,M1,2,3,4,5,集合 A 的子集 N 满足:NM,且 T(M)T(N) ,求出一个符合条件的 N; ()对于任意给定的常数 C 以及给定的集合 Aa1,a2,an,求证:存在集合 Bb1,b2,bn,使得 T(B)T(A) ,且 ()已知集合 Aa1,a2,a2m满足:aiai+1,i1,2,2m1,m2,a1a,a2mb,其中 a,bR 为给定的常数,求 T(A)的取值范围 参考答案解析参考答案解析 一、选择题(本大题共一、选择题(本大题共 10 小题,每小题小题,每小题 4 分,共分,共 40 分 )分 ) 1设集合

9、M1,0,1,Nx|x2x,则 MN( ) A1,0,1 B0,1 C1 D0 【分析】集合 M 与集合 N 的公共元素,构成集合 MN,由此利用集合 M1,0,1,Nx|x2x0,1,能求出 MN 【解答】解:集合 M1,0,1,Nx|x2x0,1, MN0,1, 故选:B 【点评】本题考查集合的交集及其运算,是基础题解题时要认真审题,仔细解答 2设命题 p:xN,n23n+6,则 p 的否定为( ) AxN,n23n+6 BxN,n23n+6 CxN,n23n+6 DxN,n23n+6 【分析】利用含有量词的命题的否定方法:先改变量词,然后再否定结论,求解即可 【解答】解:由含有量词的命题

10、的否定方法:先改变量词,然后再否定结论, 命题 p:xN,n23n+6,则 p 的否定为:xN,n23n+6 故选:B 【点评】本题考查了含有量词的命题的否定,要掌握其否定方法:先改变量词,然后再否定结论,属于基础题 3在下面四个等式运算中,正确的是( ) A3a2 Baa C2 D8 【分析】利用有理数指数幂和根式的运算性质求解 【解答】解:对于选项 A:3a2,故选项 A 错误, 对于选项 B:,故选项 B 正确, 对于选项 C:,故选项 C 错误, 对于选项 D:8,故选项 D 错误, 故选:B 【点评】本题主要考查了有理数指数幂的运算性质,考查了根式的化简计算,是基础题 4函数 f(x

11、)x2+2(a1)x+2 在区间(,4上是单调递减的,则实数 a 的取值范围是( ) Aa3 Ba3 Ca5 Da5 【分析】若 yx2+2(a1)x+2 在区间(,4上单调递减,则 1a4,解得答案 【解答】解:函数 yx2+2(a1)x+2 的图象是开口朝上,且以直线 x1a 为对称轴的抛物线, 若 yx2+2(a1)x+2 在区间(,4上单调递减, 则 1a4, 解得:a3, 故选:A 【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的对称轴和区间的关系是解答的关键 5若 f(1x),则 f(0)( ) A0 B C1 D1 【分析】化简 f(0)f(11) ,代入函数解

12、析式即可 【解答】解:f(1x), f(0)f(11)0, 故选:A 【点评】本题考查了函数的值求法,属于基础题 6已知 f(x),若 f(x)3,则 x 的值是( ) A1 B1 或 C1,或 D 【分析】利用分段函数的解析式,根据自变量所在的区间进行讨论表示出含字母 x 的方程,通过求解相应的方程得出所求的字母 x 的值或者求出该分段函数在每一段的值域,根据所给的函数值可能属于哪一段确定出字母 x 的值 【解答】解:该分段函数的三段各自的值域为(,1,0,4) 4,+) , 而 30,4) ,故所求的字母 x 只能位于第二段 ,而1x2, 故选:D 【点评】本题考查分段函数的理解和认识,考

13、查已知函数值求自变量的思想,考查学生的分类讨论思想和方程思想 7设 a,b 是非零实数,若 ab,则下列不等式成立的是( ) Aa2b2 Bab2a2b C D 【分析】由不等式的相关性质,对四个选项逐一判断,由于 a,b 为非零实数,故可利用特例进行讨论得出正确选项 【解答】解:A 选项不正确,因为 a2,b1 时,不等式就不成立; B 选项不正确,因为 a1,b2 时,不等式就不成立; C 选项正确,因为ab,故当 ab 时一定有; D 选项不正确,因为 a1,b2 时,不等式就不成立; 故选:C 【点评】本题考查不等关系与不等式,解题的关键是熟练掌握不等式的有关性质,且能根据这些性质灵活

14、选用方法进行判断,如本题采用特值法排除三个选项,用单调性判断正确选项 8已知函数 f(x)是 R 上的偶函数,当 x0 时,f(x)x1,则不等式 xf(x)0 的解集是( ) A (1,0)(1,+) B (,1)(0,1) C (,1)(1,+) D (1,1) 【分析】由偶函数的定义和已知解析式,可得 f(1)f(1)0,f(x)在0,+)递增,在(,0)递减对 x 的符号讨论可得 x 的不等式组,解不等式可得所求解集 【解答】解:函数 f(x)是 R 上的偶函数,当 x0 时,f(x)x1, 可得 f(1)0,f(1)f(1)0, f(x)在0,+)递增,在(,0)递减 不等式 xf(

15、x)0 等价为或, 解得 0 x1 或 x1, 故选:B 【点评】本题考查函数的奇偶性和单调性的定义和运用,考查转化思想和运算能力,属于基础题 9若 a0,b0,则“ab1”是“a+b2”的( ) A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件 【分析】a0,b0,利用基本不等式的性质可得:a+b2,可由 ab1,得出 a+b2反之不成立 【解答】解:a0,b0,a+b2, 若 ab1,则 a+b2 反之不成立,例如取 a5,b “ab1”是“a+b2”的充分不必要条件 故选:A 【点评】本题考查了不等式的基本性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于

16、基础题 10若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数” ,则函数解析式为 yx2+1,值域为1,3的同族函数有( ) A1 个 B2 个 C3 个 D4 个 【分析】由函数 yx2+1 的值域求出它可能的定义域是什么, 从而得出它的同族函数有多少 【解答】解:根据题意,当 x2+11 时,求得 x0; 当 x2+13 时,求得 x; 函数 yx2+1 的定义域可以是 0,0,0,共 3 个; 它的同族函数有 3 个 故选:C 【点评】本题考查了新定义的函数性质的应用问题,是基础题 二、填空题(本大题共二、填空题(本大题共 4 小题,每小题小题,每小题 5 分,

17、共分,共 20 分 )分 ) 11计算:27 【分析】利用有理数指数幂的运算性质求解 【解答】解:32 故答案为: 【点评】本题主要考查了有理数指数幂的运算性质,是基础题 12不等式 2x2x0 的解集为 x|0 x 【分析】把不等式化为 x(2x1)0, 求出不等式对应方程的实数根,写出不等式的解集 【解答】解:不等式 2x2x0 化为 x(2x1)0, 且不等式对应方程的两个实数根为 x0 或 x, 所以该不等式的解集为x|0 x 故答案为:x|0 x 【点评】本题考查了一元二次不等式的解法与应用问题,是基础题 13f(x)ax2+bx, (ab0) ,若 f(x1)f(x2) ,且 x1

18、x2,则 f(x1+x2) 0 【分析】 根据条件知 f (x) 为二次函数, 并且对称轴, 从而, 这样即可求出 x1+x2,代入 f(x)便可得出答案 【解答】解:根据 f(x1)f(x2)知 f(x)的对称轴; ; 故答案为:0 【点评】考查二次函数的一般形式,二次函数的对称轴,以及二次函数对称轴的求法,已知函数求值 14设全集为 S,集合 A,BS,有下列四个命题: ABB; SBSA; (SB)A; (SA)B 其中是命题 AB 的充要条件的命题序号是 【分析】根据集合的补集,交集、并集的定义,再由充要条件的定义判断哪些选项符合条件 【解答】解:由 ABB,可得 AB,由 AB 可得

19、 ABB,故ABB 是命题 AB 的充要条件,故满足条件, 由SBSA,可得 AB,由 AB 可得SBSA,故SBSA 是命题 AB 的充要条件,故 满足条件, 由(SB)A,可得 AB,由 AB 可得SBA,故SBA是命题 AB 的充要条件,故满足条件, 由(SA)B,可得 BA,不能推出 AB,故(SA)B不是命题 AB 的充要条件,故不满足条件 故答案为: 【点评】本题主要考查集合的表示方法,集合的补集,交集、并集的定义,充要条件的定义,属于中档题 三、解答题(本大题共三、解答题(本大题共 3 小题,共小题,共 40 分 )分 ) 15 (13 分)已知集合 AxR|x240,BxR|x

20、1|3,求:AB,AB,RB 【分析】集合 AxR|x240(2,2) ,BxR|x1|32,4,然后可求 AB,AB,RB 【解答】解:集合 AxR|x240(2,2) ,BxR|x1|32,4, AB(2,2) ; AB2,4; RB(,2)(4,+) 【点评】本题考查集合运算,考查数学运算能力,属于基础题 16 (13 分)已知函数 f(x)4x+ ()应用函数单调性的定义证明:函数 f(x)在区间,+)上单调递增; ()求 f(x)在区间1,3上的最大值与最小值 【分析】 ()任取 x1,x2,+) ,且 x1x2,再作差 f(x1)f(x2) ,确定 f(x1) ,f(x2)的大小,

21、即可得出答案 ()由()知 f(x)在1,3上的最大值为 f(1) ,最小值为 f(3) 【解答】解: ()证明:任取 x1,x2,+) ,且 x1x2, 所以 f(x1)f(x2)(4x1+)(4x2+)4(x1x2)+() 4(x1x2)+(x1x2) (4)(x1x2), 因为 x1x2, 所以 x1x20, 又因为 x1,x2,+) , 所以 4x1x210, 所以 f(x1)f(x2) , 所以 f(x)在,+)上单调递减 ()由()知 f(x)在1,3上的最大值为 f(1)5, f(x)的最小值为 f(3)3+ 【点评】本题考查函数的性质,解题中需要理清思路,属于中档题 17 (1

22、4 分)近年来,某企业每年消耗电费约 24 万元,为了节能减排,决定安装一个可使用 15 年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为 0.5为了保证正常用电,安装后采用太阳能和电能互补供电的模式假设在此模式下,安装后该企业每年消耗的电费 C(单位:万元)与安装的这种太阳能电池板的面积 x(单位:平方米)之间的函数关系是 C(x)(x0,k 为常数) 记 F 为该村安装这种太阳能供电设备的费用与该村 15 年共将消耗的电费之和 (1)试解释 C(0)的实际意义,并建立 F 关于 x 的函数关系式; (2)当 x

23、 为多少平方米时,F 取得最小值?最小值是多少万元? 【分析】 (1)C(0)的实际意义是安装这种太阳能电池板的面积为 0 时的用电费用,依题意,C(0)24,可求得 k,从而得到 F 关于 x 的函数关系式; (2)利用基本不等式即可求得 F 取得的最小值及 F 取得最小值时 x 的值 【解答】解: (1)C(0)的实际意义是安装这种太阳能电池板的面积为 0 时的用电费用, 即未安装太阳能供电设备时全村每年消耗的电费(2 分) 由 C(0)24,得 k2400 (3 分) 所以 F15+0.5x+0.5x,x0(7 分) (2)因为+0.5(x+5)2.522.557.5,(10 分) 当且

24、仅当0.5(x+5) ,即 x55 时取等号 (13 分) 所以当 x 为 55 平方米时,F 取得最小值为 57.5 万元(14 分) 【点评】本题考查函数最值的应用,着重考查分析与理解能力,考查基本不等式的应用,属于难题 一、选择题(本大题共一、选择题(本大题共 3 小题,每小题小题,每小题 4 分,共分,共 12 分在分在每小题给出的四个选项中,只有一个选项正确 )每小题给出的四个选项中,只有一个选项正确 ) 18函数 f(x)的最大值是( ) A B C D 【分析】把分母整理成(x)2+进而根据二次函数的性质求得其最小值,则函数 f(x)的最大值可求 【解答】解:1x(1x)1x+x

25、2(x)2+, f(x),f(x)max 故选:D 【点评】本题主要考查了基本不等式的应用,二次函数的性质解题的关键把分母配方成一元二次函数的形式 19设函数 f(x),则不等式 f(x)f(1)的解集是( ) A (3,1)(3,+) B (3,1)(2,+) C (1,1)(3,+) D (,1)(1,3) 【分析】求出函数值,利用分段函数求解不等式的解集即可 【解答】解:函数 f(x),则 f(1)3, 不等式 f(x)f(1)等价于:或, 解得:x(3,1)(3,+) 故选:A 【点评】本题考查分段函数的应用,不等式组的解法,考查计算能力 20函数 f(x)的图象如图所示,则下列结论成

26、立的是( ) Aa0,b0,c0 Ba0,b0,c0 Ca0,b0,c0 Da0,b0,c0 【分析】分别根据函数的定义域,函数零点以及 f(0)的取值进行判断即可 【解答】解:函数在 P 处无意义,由图象看 P 在 y 轴右边,所以c0,得 c0, f(0),b0, 由 f(x)0 得 ax+b0,即 x, 即函数的零点 x0, a0, 综上 a0,b0,c0, 故选:C 【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及 f(0)的符号是解决本题的关键 二、填空题(本大题共二、填空题(本大题共 3 小题,每小题小题,每小题 4 分,共分,共 12 分 )分

27、) 21函数的定义域为 4,0)(0,1 【分析】根据负数不能开偶次方根和分母不能为零求解 【解答】解:由题意得 4x1 且 x0 定义域是:4,0)(0,1 故答案为:4,0)(0,1 【点评】本题主要考查给出解析式的函数的定义域及其求法,这里主要涉及到分式函数,则分母不能为零;还有根式函数,则负数不能开偶次方根 22若二次函数 f(x)的图象关于 x2 对称,且 f(a)f(0)f(1) ,则实数 a 的取值范围是 a0 或a4 【分析】由已知条件可分析出二次函数 f(x)的对称轴和开口方向,画出图象,有图象可得出 a 的取值范围 【解答】解:由题意可知二次函数 f(x)的对称轴为 x2,

28、 因为 f(0)f(1) ,所以 f(x)在(,2)上单调递增, 所以二次函数 f(x)开口向下,在(,2)上单调递增,在(2,+)上单调递减 当 a(,2)时:,解得 a0 当 a(2,+)时:因为 f(4)f(0) , 所以,解得 a4 综上所求:a0 或 a4 故答案为:a0 或 a4 【点评】考察了二次函数的图象和性质,培养学生的数形结合的数学思想 23对实数 a,b 定义运算“” :,设函数 f(x)(x22)(x1) ,xR,若函数 yf(x)c 的图象与 x 轴恰有两个公共点,则实数 c 的取值范围是 (2,1(1,2 【分析】根据定义的运算法则化简函数 f(x)(x22)(x1

29、) ,并画出 f(x)的图象, 函数 yf(x)c 的图象与 x 轴恰有两个公共点转化为 yf(x)与 yc 图象的交点问题,结合图象求得实数 c 的取值范围 【解答】解:ab, 函数 f(x)(x22)(x1) 画出图形,如图; 由图知,当 c(2,1(1,2,函数 f(x)与 yc 的图象有两个公共点, c 的取值范围是 (2,1(1,2, 故答案为: (2,1(1,2 【点评】本题考查了方程的根的存在性及个数的判断以及二次函数的图象特征、函数与方程的综合运用问题,是中档题 三、解答题(本大题共三、解答题(本大题共 2 小题,共小题,共 26 分 )分 ) 24 (13 分)已知函数 f(

30、x)x2+(2+a)x+b,其中 a,bR ()当 a1,b4 时,求函数 f(x)的零点; ()当 b2a 时,解关于 x 的不等式 f(x)0; ()如果 f(x)2x+2 对任意实数 x 恒成立,证明:b2 【分析】 ()求出 f(x)的表达式,利用零点的定义,令 f(x)0,求出 x 的值,即可得到答案; ()求出 f(x)0 的两个根,分a2,a2,a2 三种情况,由一元二次不等式的解法求解即可; ()利用二次函数的图象与性质,列出0,求解即可 【解答】 ()解:函数 f(x)x2+(2+a)x+b, 当 a1,b4 时,f(x)x2+3x4, 令 f(x)0,即 x2+3x40,解

31、得 x4 或 x1, 故函数 f(x)的零点为4 或 1; ()解:当 b2a 时,f(x)x2+(2+a)x+2a, 令 f(x)0,解得 xa 或 x2, 当a2,即 a2 时,f(x)0 的解集为x|x2; 当a2,即 a2 时,f(x)0 的解集为a,2; 当a2,即 a2 时,f(x)0 的解集为2,a 综上所述,当 a2 时,f(x)0 的解集为x|x2; 当 a2 时,f(x)0 的解集为a,2; 当 a2 时,f(x)0 的解集为2,a ()证明:因为 f(x)2x+2 对任意实数 x 恒成立, 即 x2axb20 对任意实数 x 恒成立, 所以a24(b2)0,即, 因为,

32、所以 b20,即 b2 【点评】 本题考查了函数零点的求解, 函数零点定义的理解与应用, 含有参数的一元二次不等式的求解,不等式恒成立的求解,二次函数图象与性质的应用,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题 25(13 分) 已知集合 Aa1, a2, , an, aiR, i1, 2, , n, 并且 n2 定义(例如:) ()若 A1,2,3,4,5,6,7,8,9,10,M1,2,3,4,5,集合 A 的子集 N 满足:NM,且 T(M)T(N) ,求出一个符合条件的 N; ()对于任意给定的常数 C 以及给定的集合 Aa1,a2,an,求证

33、:存在集合 Bb1,b2,bn,使得 T(B)T(A) ,且 ()已知集合 Aa1,a2,a2m满足:aiai+1,i1,2,2m1,m2,a1a,a2mb,其中 a,bR 为给定的常数,求 T(A)的取值范围 【分析】 ()根据新定义即可求出答案, ()够造新数列 Bd+a1,d+a2,d+an,根据新定义可得取 d即可证明 ()利用数学归纳法即可证明 【解答】解: (I)N6,7,8,9,10 (II)证明:令 Bd+a1,d+a2,d+an, (d 为待定参数) T(B)|(d+ai)(d+aj)|ajai|T(A) ,nd+c, 取 d即可 (3)下面利用数学归纳法证明|ajai|(2

34、m+12k) (a2m+12kak) , 当 m2 时,|ajai|a4a3|+|a3a2|+|a2a1|+|a4a2|+|a3a1|+|a4a1|3(a4a1)+(|a3a2) 成立 假设结论对 m 时成立,下面证明 m+1 时的情形 |ajai|ajai|+|(a2m+1ai)+(a2m+2ai) (2m+12k) (a2m+1kak)+(a2m+1ai)+(a2m+2ai) (2m+12k) (a2m+1kak)+(2m1)a2m+1+(2m+1)a2m+22ai, (2m+32k) (a2m+3kak) , 即 T(A)(2m+12k) (a2m2kak)m2(ba) 【点评】 本题考查了数列在新定义中的应用, 以及数学归纳法, 考查了推理能力与计算能力, 属于难题