1、15.1.1 从分数到分式 回忆:什么叫整式? 请你举例说明. 整式 单项式: 数与字母或字母与字母的积 多项式: 几个单项式的和 1 知识点 分式的定义 填空: (1)长方形的面积为10 cm2,长为7 cm, 则宽为_cm;长方形的面积为S,长为a,则宽为 . (2)把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,则水面高度为_ cm; 把体积为V的水倒入底面积为S的圆柱形容器 中,则水面高度 为 . 107VS20033Sa思考 式子 ,以及式子 有什么共同点?它们与分数有什么相同点和不同点? S VaS,9060,3030vv都具有分数的形式 相同点 不同点 (观察分
2、母) 分母中有字母 AB 一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 叫做分式. 分式 中,A叫做分子,B叫做分母. AB定义: 下列各式:3a2, 中,哪些是分式?哪些是整式? 按分式的定义知分母中含有字母的式子是分式,分母中不含有字母的式子是整式 分式有 ; 整式有 . 例1 导引: 2 222,3,2+2xx abxxxy 解: 2223,32+2,xaba 22,xxxxy 判断一个式子是否是分式的方法:首先要具有 的形式,其次A,B是整式,最后看分母是不是含有字母,分母含有字母是判定分式的关键条件 AB总 结 1.列式表示下列各量: (1)某村有n个人,耕地40 hm
3、2,则人均耕地面积为 hm2. (2)ABC的面积为S,BC边的长为a, 则高AD为_. (3)一辆汽车b h行驶了 a km,则它的平均速度为_km/h; 一列火车 行驶a km比这辆汽车少用1 h,则它的平均速度为_ km/h. 40n2Saab1ab 2.下列式子中,哪些是分式?哪些是整式?两类式子的区别是什么? 22222142521,3 35321 3(),xaxmn xxcxbxymn xxab分式有: 整式有: 解: 222221421,;3521 3()xmn xxcxbxymn xxab,25,.33xa 2 知识点 分式有意义的条件 思考 我们知道,要使分数有意义,分数中的
4、分母不能为0.要使分式有意 义,分式中的分母应满足什么条件? 在分式中,当分母的值不为0时,分式有意义;当分母的值为0时,分式无意义 要点精析: (1)分母不为0,并不是说分母中的字母不能为0,而是表示分母的整式的值不能为0. (2)分式是否有意义,只与分式的分母是否为0有关,而与分式的分子的值是否为0无关 归纳 下列分式中的字母满足什么条件时分式有意义? (1) (2) (3) (4) 例2 .xyxy 解: ;1xx 2;3x1;53b (1)要使分式 有意义,则分母3x0,即x 0. (2)要使分式 有意义,则分母x-10,即x 1. (3)要使分式 有意义,则分母5-3b0,即 ; (
5、4)要使分式 有意义,则分母x-y0,即xy. 23x1xx 153b 53b xyxy 求分式有意义时字母的取值范围,一般是根据分母不等于0构造不等式,求使分式的分母不等于0的字母的取值范围 总 结 1.使分式 无意义的x满足的条件是( ) A. x2 B. x2 C. x2 D. x2 22xx 2.下列各式中,无论x取何值,分式都有意义的是( ) A. B. C. D. 121x 21xx 2311xx 2221xx B D 3 知识点 分式的值为零的条件 分式值为零的条件及求法: (1)条件:分子为0,分母不为0. (2)求法:利用分子等于0,构建方程解方程求出所含字母的值代入验证:将
6、所求的值 代入分母,验证是否使分母为0,若分母不为0,所求的值使分式值为0;否则,应舍去 若分式 的值为零,则x的值为( ) A0 B1 C1 D1 例3 导引: 分式的值为0的条件是:分子为0,分母不为0,由此条件 解出x即可 由x210,得x1. 当x1时,x10,故x1不合题意; 当x1时,x120,所以x1时分式的值为0. 211xx C 求使分式的值为0的字母的值的方法:首先求出使分子的值等于0的字母的值,再检验这个字母的值是否使分母的值等于0,只有当它使分母的值不为0时,才是我们所要求的字母的值 总 结 1在代数式 , , , 中, 分式的个数为( ) A1 B2 C3 D4 2已
7、知分式的值是零,那么x的值是( ) A1 B0 C1 D1 C C 3下列各式中,无论 x 取何值,分式都有意义的是( ) A. 12x1 B. x2x1 C. 3x1x2 D. x22x21 4下列各式1x1,15xy,a2b2ab,3x2,0 中,是分式的有_;是整式的有_ D 21, 3,05xyx221,1abxab 5若分式1x2有意义,则 x 的取值范围是_ 6若分式|x|1x1的值为 0,则 x 的值为_ 7如果分式3x227x3的值为 0,则 x 的值应为_ x2 1 3 nm0.2nm 9080mnmn 8列式表示下列各量: (1)王老师骑自行车用了m小时到达距离家n千米的学
8、校,则王老师的平均速度是_千米/小时;若乘公共汽车则可少用0.2小时,则公共汽车的平均速度是_千米/小时; (2)某班在一次考试中,有m人得90分,有n人得80分,那么这两部分人合在一起的平均分_分 9若分式52x的值为负数,则 x 的取值范围是( ) Ax2 Bx2 Cx5 Dx2 10(1)当 x_时,分式4x3x5的值为 1; (2)当 x_时,分式4x3x5的值为1. A 83 2511已知当x4时,分式 无意义,当x2时,分式的值为零,求ab的值 xbxa 解:当x4时, . 分式无意义,4a0,a4. 当x2时, 0, 2b0,b2.ab2. 44xbbxaa 22ba 分式的定义 分式有意义 分式的值为0 分母不等于0 分子=0 分母0 最后答案 整式A、B相除可写为 的形式,若分母中含有字母,那么 叫做分式. BABA