ImageVerifierCode 换一换
格式:DOCX , 页数:18 ,大小:1.13MB ,
资源ID:218624      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-218624.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北京市东城区2021-2022学年高二下学期期末统一检测数学试卷(含答案解析))为本站会员(吹**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北京市东城区2021-2022学年高二下学期期末统一检测数学试卷(含答案解析)

1、北京市东城区2021-2022学年高二下期末统一检测数学试题一选择题:共10小题,每小题3分,共30分.1. 已知集合,则( )A. B. C. D. 2. 的展开式中常数项为( )A. 30B. 20C. 15D. 103. 已知函数,则( )A. 3B. 1C. D. 4. 若函数图象过点,则( )A. 3B. 1C. -1D. -35. 某校为全体高中学生开设了15门校本课程,其中人文社科类6门,科学技术类6门,体育美育类3门.学校要求每位高中学生需在高中三年内选学其中的8门课程.从全校高中学生中随机抽取一名学生,设该学生选择的人文社科类的校本课程为门,则下列概率中等于的是( )A. B

2、. C. D. 6. 设,给出下列四个结论:;.其中正确的结论的序号为( )A. B. C. D. 7. 已知函数,若对于任意,满足,且,则一定有( )A. B. C. D. 8. 算盘是中国古代的一项重要发明,迄今已有2600多年的历史.现有一算盘,取其两档(如图一),自右向左分别表示十进制数的个位和十位,中间一道横梁把算珠分为上下两部分,梁上一珠拨下,记作数字5,梁下四珠,上拨一珠记作数字1(如图二算盘表示整数51).若拨动图1的两枚算珠,则可以表示不同整数的个数为( )A. 6B. 8C. 10D. 159. “”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条

3、件D. 既不充分也不必要条件10. “字节”(Byte,B)常用于表示存储容量或文件大小.随着网络存储信息量的增大,我们还用千(K,kilo)兆(M,mega)吉(G,giga)太(T,tera)拍(P,peta)等单位表示存储容量.各单位数量级之间的换算关系如下:1KB=1024B;1MB=1024KB;1GB=1024MB;1TB=1024GB;1PB=1024TB=xB。已知是一个位整数,则( )(参考数据:)A. 8B. 9C. 15D. 16二填空题:共6小题,每小题4分,共24分.11. 函数的定义域为_.12. 已知事件A,B相互独立,则_.13. 设函数,当自变量从0变到1时,

4、它们的平均变化率分别记为,则,之间的大小关系为_(用“”“”“”“=”连接);三个函数中在处的瞬时变化率最大的是_.【答案】 . . #【解析】【分析】(1)根据平均变化率的定义求解即可;(2)求导判断在处的导函数的值的大小即可详解】(1)由题意,故;(2)由题意,故,故三个函数中在处的瞬时变化率最大的是故答案为:;.14. 将若干红球与黄球放进一个不透明的袋子中,这些球的大小与重量完全相同.已知袋子中红球与黄球个数之比为,其中的红球印有商标,的黄球印有商标.现从袋子中随机抽取一个小球,则小球印有商标的概率为_.【答案】【解析】【分析】本题考查全概率公式理解与应用,小球印有商标有两个来源,其一

5、是红球印有商标,其二是黄球印有商标,根据题意分别计算其概率,根据全概率公式计算印有商标的概率.【详解】设抽取一个小球为红球为事件,红球印有商标为事件,抽取一个小球为黄球为事件,黄球印有商标为事件,小球印有商标为事件,由题意,则.故答案为:.15. 已知函数的定义域为D,给出下列三个条件:,有;,有;且,有.试写出一个同时满足条件的函数,则_.【答案】(答案不唯一)【解析】【分析】根据条件分析函数的奇偶性、单调性判断即可【详解】由可得,在定义域内为奇函数,由可得恒成立,由可得不是在整个区间上单调递减,故可有故答案为:(答案不唯一)16. 合理使用密码是提升网络空间安全的重要手段.密码安全性强弱与

6、其长度使用字符种类数及排列规律等相关,其中字符可以是数字、字母及一些特殊符号等.某密码的安全性评分主要分为以下四个方面:长度小于等于个字符至个字符大于等于个字符得分得分得分字母不含字母含字母,全用小写或全用大写含字母,既含小写又含大写得分得分得分特殊符号不含符号含个符号含大于个符号得分得分得分数字不含数字含至个数字含大于等于个数字得分得分得分设密码安全性评分为,若为安全性较强;为安全性中等;为安全性较弱.现有一个长度大于个字符的密码,其安全性评分为分,给出如下判断:该密码既含有小写字母又含有大写字母;该密码至少含有个数字;该密码含多于个特殊符号;该密码一定同时含有字母,特殊符号和数字.其中所有

7、正确判断序号是_.【答案】【解析】【分析】根据密码的评分为分写出密码的可能组成方式,逐项判断可得结果.【详解】因为该密码为一个长度大于个字符,若该密码含字母,全用小写或全用大写,且含大于个符号,含大于等于个数字,则该密码的得分为分,若该密码含字母,既含小写又含大写,且含个符号,含大于等于个数字,则该密码的得分为分,则错,对,错,对.故答案为:.三解答题:共5小题,共46分.解答应写出文字说明,演算步骤或证明过程.17. 已知函数.(1)求曲线在点处的切线方程,(2)求的最小值.【答案】(1) (2)【解析】【分析】(1)利用导数的几何意义求解即可,(2)对函数求导后,令,求出函数的极值点,再求

8、出函数的单调区间,从而可求出函数的最小值【小问1详解】由,得,所以切线的斜率为,所以切线方程为,即,【小问2详解】函数的定义域为,由(1)可知,令,则,得,当时,当时,所以在上递减,在上递增,所以当时,取得最小值,所以的最小值为18. 已知函数.(1)求的值;(2)求不等式的解集;(3)当时,是否存在使得成立的值?若存在,直接写出的值;若不存在,说明理由.【答案】(1)4 (2)或 (3)存在;【解析】【分析】(1)根据分段函数的解析式,先求得值,进而求得的值;(2)根据x的取值范围,分段解不等式,可得答案;(3)根据函数解析式,可直接写出满足条件的值.【小问1详解】因为函数,故 ,所以;【小

9、问2详解】当时,令 ,则,此时,当时,令,解得,此时,故不等式解集为或 ;【小问3详解】当时,满足时,使得成立,即当时,存在使得成立的值.19. 毛猴是老北京的传统手工艺品,制作材料都取自中药材,工序大致分为三步,第一步用蝉蜕做头和四肢;第二步用辛夷做身子:第三步用木通做道具.已知小萌同学在每个环节制作合格的概率分别为,只有当每个环节制作都合格时.这件作品才算制作成功,(1)求小萌同学制作一件作品成功的概率;(2)若小萌同学制作了3件作品,假设每次制作成功与否相互独立.设其中成功的作品数为.求的分布列及期望.【答案】(1) (2)的分布列见解析,【解析】【分析】(1)利用相互独立事件的概率乘法

10、公式计算即可得出;(2)先确定,写出的可能值,再求出对应的概率即可作答.【小问1详解】根据题意知,由相互独立事件的概率乘法公式得小萌同学学制作一作品成功的概率 为:.【小问2详解】根据题意知,的可能值为:显然,则 所以的分布列为:0123的数学期望:20. 已知函数.(1)求的极大值;(2)若图象上的点都在直线的下方,求的取值范围.【答案】(1) (2)【解析】【分析】(1)求出函数的导数,判断其正负,判断函数的单调性,确定极值点,从而求得极值;(2)结合(1)作出函数的大致图象,利用导数的几何意义求出直线和图象相切时的斜率值,再根据图象上的点都在直线的下方,即可确定的取值范围.【小问1详解】

11、由题意得,当时,递增,当时,递减,故是函数的极大值点,函数的极大值为;【小问2详解】由可知,当x趋近于0时, ,当时,结合(1),作出函数的大致图象如图:直线过定点,先求直线和图象相切时的斜率值;设切点为,则,而 ,故,则,由于函数是单调增函数,且时,故由可得 ,则,此时,即直线和曲线相切时,切点为,若图象上的点都在直线的下方,则,故的取值范围是.21. 设是非空实数集,且.若对于任意的,都有,则称集合具有性质;若对于任意的,都有,则称集合具有性质.(1)写出一个恰含有两个元素且具有性质的集合;(2)若非空实数集具有性质,求证:集合具有性质;(3)设全集,是否存在具有性质的非空实数集,使得集合

12、具有性质?若存在,写出这样的一个集合;若不存在,说明理由.【答案】(1); (2)证明见解析; (3)不存在,理由见解析.【解析】【分析】(1)根据题意直接写出即可.(2)根据性质可知,分别说明集合中元素为1个、2个、大于2个时,集合中元素满足性质即可.(3)由题意可知,且不是单元素集,令,,且 ,则可分别说明当与当时矛盾.【小问1详解】【小问2详解】若集合具有性质,不妨设,由非空数集具有性质,有.若,易知此时集合具有性质.若实数集只含有两个元素,不妨设,由,且,解得,此时集合具有性质.若实数集含有两个以上的元素,不妨设不为1的元素,则有,由于集合具有性质,所以有,这说明集合具有性质.【小问3详解】不存在具有性质的非空实数集,使得集合具有性质.由于非空实数集具有性质,令集合,依题意不妨设. 因为集合具有性质,所以.若,则,否则,这与矛盾. 故集合不是单元素集.令,且 ,若,可得,即,这与矛盾; 若,由于,所以,因此,这与矛盾. 综上可得:不存在具有性质的非空实数集,使得集合具有性质.