ImageVerifierCode 换一换
格式:PPT , 页数:17 ,大小:413.11KB ,
资源ID:218476      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-218476.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.4.2.2用空间向量研究夹角问题ppt课件-2022年秋高二上学期数学人教A版(2019)选择性必修第一册)为本站会员(吹**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

1.4.2.2用空间向量研究夹角问题ppt课件-2022年秋高二上学期数学人教A版(2019)选择性必修第一册

1、221221221212121)()()(|zzyyxxPPPPPP复习回顾 1.空间两点之间的距离 2222|()PQPlAPAQaa u点 到直线 的距离为 2. 点到直线的距离 AuQlaP两条平行直线的距离两条平行直线的距离 思考:两条异面直线的距离怎么求?思考:两条异面直线的距离怎么求? 3. 点到平面的距离 A P Q l nAP nnAP nPQAPnnn l PQ PQ直线与平行平面的距离直线与平行平面的距离 两平行平面的距离两平行平面的距离 (1)建立立体图形与空间向量的联系,)建立立体图形与空间向量的联系,用空间向量表示用空间向量表示问题问题中中涉及的点涉及的点、直线直线、

2、平面平面,把立体几何问题转化为向量问题;,把立体几何问题转化为向量问题; (2)通过)通过向量运算向量运算,研究点、直线、平面之间的位置关系以,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;及它们之间距离和夹角等问题; (3)把向量的运算结果)把向量的运算结果“翻译”“翻译”成相应的成相应的几何结论几何结论. (化为向量问题)(化为向量问题) (进行向量运算)(进行向量运算) (回到图形)(回到图形) 用空间向量解决立体几何问题的“用空间向量解决立体几何问题的“三步曲三步曲”: 与距离类似,角度是立体几何中另一个重要的度量 下面我们用向量方法研究直线与直线所成的角、直线与平面所

3、成的角以及平面与平面的夹角 直接引入 先回顾一下向量与向量所成的角如何求? ab|a bcosa bC A B D M N 例1 如图,在棱长为1的正四面体(四个面都是正三角形) ABCD中, M, N分别为BC, AD的中点,求直线AM和CN夹角的余弦值 AMCNMACNMA CNMACN,.,分分析析: 求求直直线线和和夹夹角角的的余余弦弦值值可可以以转转化化为为求求向向量量与与夹夹角角的的余余弦弦值值 为为此此需需要要把把向向量量用用适适当当的的基基底底表表示示出出来来 进进而而求求得得向向量量夹夹角角的的余余弦弦值值典例分析 解:化为向量问题 MACACMCACBCA CB CDCNC

4、ACD,11(,),22如如图图 以以作作为为基基底底 则则C A B D M N CNMAAMCN,cos. 设设向向量量与与的的夹夹角角为为则则直直线线与与夹夹角角的的余余弦弦值值等等于于进行向量运算 CN MACACDCACBCACA CBCD CACD CB211() ()22111124241111128442 ABCACDMACN,3.2又又和和均均为为等等边边三三角角形形所所以以CN MACNMA122cos33322 所所以以C A B D M N 回到图形问题 2.3AMCN所所以以直直线线和和夹夹角角的的余余弦弦值值为为探究新知 llu v12,., 可可以以转转化化为为两

5、两条条异异面面直直线线的的来来两两条条异异面面直直线线所所成成求求得得 也也就就是是说说 若若异异面面直直线线所所 一一般般成成的的角角为为其其方方向向向向量量分分别别是是方方的的角角向向量量地地向向的的夹夹角角则则u vu vu vuvuvcoscos, (0,2 异异面面直直线线所所成成角角的的范范围围: 思考:我们在例1用向量方法解决了异面直线AM和CN所成角的问题,你能用向量方法求直线AB与平面BCD所成的角吗? 探究新知 C A B D M N ,可可以以转转化化为为直直 类类似似线线的的方方向向向向量量与与平平直直线线面面的的与与平平面面所所成成的的角角地地法法向向量量的的夹夹角角

6、. . A B C unABBBABun,., 如如图图 直直线线与与平平面面 相相交交于于点点 设设直直线线 与与平平 面面 所所成成的的角角为为直直线线的的方方向向向向量量平平面面 的的法法向向量量为为则则u nu nu nununsincos, 探究新知 0,2 线线面面角角的的范范围围: ,90. 如如图图 平平面面 与与平平面面 相相交交 形形成成四四个个二二面面角角 我我们们把把这这四四个个二二面面角角中中的的二二面面角角称称为为平平面面 与与平平面面不不于于的的夹夹角角大大 探究新知 思考:图中有几个二面角?两个平面的夹角与这两个平面形成的二面角有什么关系? nnnn1212,.

7、 平平面面 与与平平 类类似似于于两两条条异异面面直直线线所所成成的的角角 若若平平面面的的法法向向量量分分别别是是即即和和则则向向量量 和和 的的夹夹角角或或为为面面 的的夹夹其其补补角角角角 1n2nnnnnn nnnnn1212121212coscos, 探究新知 , 设设的的夹夹面面平平面面角角为为平平与与则则0,2 面面面面角角的的范范围围: A B C C1 A1 B1 x y z P Q R ACBPBCQABCA B CACCBAAAA BBAQAQ BRRBA BRPQRC11111111111,2,3,2,2,90 ,.2 中中为为的的中中点点 点点分分如如别别在在棱棱上上

8、图图 在在直直三三棱棱柱柱求求平平面面与与平平面面夹夹角角的的余余弦弦值值例例PQRA B CPQRA B C111111 ,法法向向量量的的夹夹角角分分析析:因因为为平平面面与与平平面面的的夹夹角角可可以以转转化化为为平平面面与与平平面面的的所所以以只只需需要要求求出出这这两两个个平平面面的的法法向向量量的的夹夹角角即即可可. .典例分析 解:化为向量问题解:化为向量问题 CC A C B C CxyzA B CnPQRnPQRA B Cnn1111111112111112,. ,.,所所在在直直线线为为 轴轴、 轴轴、 轴轴 建建立立如如图图所所示示的的空空间间直直角角坐坐标标系系设设平平

9、面面的的法法向向量量为为的的法法向向量量 以以为为原原点点平平面面则则平平为为与与平平面面的的夹夹角角面面的的夹夹角角是是与与或或其其补补角角就就A B C C1 A1 B1 x y z P Q R 进行向量运算进行向量运算 C CA B CA B Cn11111111,(0,0,1) 因因为为平平面面所所以以平平面面的的一一个个法法向向量量为为PQRPQPR,(0,1, 3),(2, 0, 2),(0,2,1)(2, 1, 1),(0, 1, 2)根根据据所所建建立立的的空空间间直直角角坐坐标标系系 可可知知 所所以以y nx y znPQxyzxzyznPRyz222( , , ),302022002 设设则则nnnn nnn2121212(3,4,2),(0,0,1) (3,4,2)2 29cos,29129 取取则则回到图形问题回到图形问题 PQRA B Cn n111122 29,coscos,29 设设平平面面与与平平面面的的夹夹角角为为则则PQRA B C1112 29.29故故平平面面与与平平面面的的夹夹角角的的余余弦弦值值为为nnnnn nnnnn1212121212coscos, 面面面面角角: 课堂小结 u nu nu nununsincos, 线线面面角角: u vu vu vuvuvcoscos, 线线线线角角: