ImageVerifierCode 换一换
格式:DOCX , 页数:69 ,大小:4.41MB ,
资源ID:217454      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-217454.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年全国中考数学真题分项汇编专题16:解直角三角形(含答案解析))为本站会员(吹**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2022年全国中考数学真题分项汇编专题16:解直角三角形(含答案解析)

1、专题16 解直角三角形一选择题1(2022天津)的值等于()A2B1CD2(2022四川乐山)如图,在中,点D是AC上一点,连接BD若,则CD的长为()AB3CD23(2022浙江杭州)如图,已知ABC内接于半径为1的O,BAC=(是锐角),则ABC的面积的最大值为()A B C D4(2022云南)如图,已知AB是O的直径,CD是OO的弦,ABCD垂足为E若AB=26,CD=24,则OCE的余弦值为()ABCD5(2022陕西)如图,是的高,若,则边的长为()ABCD6(2022浙江金华)一配电房示意图如图所示,它是一个轴对称图形,已知,则房顶A离地面的高度为()A B C D7(2022浙

2、江丽水)如图,已知菱形的边长为4,E是的中点,平分交于点F,交于点G,若,则的长是()A3BCD8(2022四川广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cosAPC的值为()ABCD9(2022湖北随州)如图,已知点B,D,C在同一直线的水平,在点C处测得建筑物AB的顶端A的仰角为,在点D处测得建筑物AB的顶端A的仰角为,则建筑物AB的高度为()A B C D二填空题10(2022山东泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角,已知窗户的高度,窗台的高度,窗外水平遮阳篷的宽,则的长度为_(结果精确到)11(2022

3、天津)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及的一边上的点E,F均在格点上()线段的长等于_;()若点M,N分别在射线上,满足且请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)_12(2022江苏扬州)在中,分别为的对边,若,则的值为_13(2022湖南衡阳)回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首王安石曾赋诗联“万里衡阳雁,寻常到此回”峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,已知测角仪的高度为,则大雁雕塑的高度约为_(结果精确到参考数据

4、:)14(2022浙江嘉兴)如图,在ABC中,ABC90,A60,直尺的一边与BC重合,另一边分别交AB,AC于点D,E点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_15(2022浙江绍兴)如图,点在射线上的动点,连接,作,动点在延长线上,连接,当,时,的长是_16(2022山东泰安)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔的高度,他从古塔底部点处前行到达斜坡的底部点C处,然后沿斜坡前行到达最佳测量点D处,在点D处测得塔顶A的仰角为,已知斜坡的斜面坡度,且点A,B,C,D,在同一平面内,小明同学测得古塔的高度是_17(2022江苏连云港)如图,在正

5、方形网格中,的顶点、都在网格线上,且都是小正方形边的中点,则_18(2022四川凉山)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为,反射角为(反射角等于入射角),ACCD于点C,BDCD于点D,且AC3,BD6,CD12,则tan的值为_19(2022四川凉山)如图,在边长为1的正方形网格中,O是ABC的外接圆,点A,B,O在格点上,则cosACB的值是_20(2022山东滨州)在RtABC中,C=90,AC=5,BC=12,则sinA=_.21(2022湖北黄冈)如图,有甲乙两座建筑物,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离已知

6、乙建筑物的高度为,则甲建筑物的高度为_(,结果保留整数)22(2022四川广元)如图,直尺AB垂直竖立在水平面上,将一个含45角的直角三角板CDE的斜边DE靠在直尺的一边AB上,使点E与点A重合,DE12cm当点D沿DA方向滑动时,点E同时从点A出发沿射线AF方向滑动当点D滑动到点A时,点C运动的路径长为 _cm23(2022湖北宜昌)如图,岛在A岛的北偏东方向,岛在岛的北偏西方向,则的大小是_三解答题24(2022江苏宿迁)如图,某学习小组在教学楼的顶部观测信号塔底部的俯角为30,信号塔顶部的仰角为45已知教学楼的高度为20m,求信号塔的高度(计算结果保冒根号)25(2022天津)如图,某座

7、山的项部有一座通讯塔,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为,测得塔底B的仰角为已知通讯塔的高度为,求这座山的高度(结果取整数)参考数据:26(2022浙江湖州)如图,已知在RtABC中,C90,AB5,BC3求AC的长和sinA的值27(2022新疆)周米,王老师布置了一项综合实践作业,要求利用所学知识测量一栋楼的高度小希站在自家阳台上,看对面一栋楼顶部的仰角为,看这栋楼底部的俯角为,已知两楼之间的水平距离为,求这栋楼的高度(参考数据:)28(2022湖南邵阳)如图,一艘轮船从点处以的速度向正东方向航行,在处测得灯塔在北偏东方向上,继续航行到达处,这时测得灯塔在北偏东方向

8、上,已知在灯塔的四周内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由(提示:,)29(2022湖南怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园如图,纪念园中心点A位于C村西南方向和B村南偏东60方向上,C村在B村的正东方向且两村相距2.4千米有关部门计划在B、C两村之间修一条笔直的公路来连接两村问该公路是否穿过纪念园?试通过计算加以说明 (参考数据:1.73,1.41)30(2022四川成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动如图,当张角

9、时,顶部边缘处离桌面的高度的长为,此时用眼舒适度不太理想小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角时(点是的对应点),用眼舒适度较为理想求此时顶部边缘处离桌面的高度的长(结果精确到;参考数据:,)31(2022四川泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30方向,且A,D相距10 nmile该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile求B,D间的距离(计算过程中的数据不取近似值)32(2022浙江台州)如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角为75,梯子AB

10、长3m,求梯子顶部离地竖直高度BC(结果精确到0.1m;参考数据:sin750.97,cos750.26,tan753.73)33(2022湖南湘潭)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中):伞柄始终平分,当时,伞完全打开,此时请问最少需要准备多长的伞柄?(结果保留整数,参考数据:)34(2022湖南常德)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对

11、冰雪运动的热情某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成图是其示意图,已知:助滑坡道米,弧形跳台的跨度米,顶端到的距离为40米,求此大跳台最高点距地面的距离是多少米(结果保留整数)(参考数据:,)35(2022湖北宜昌)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角一般要满足如图,现有一架长的梯子斜靠在一竖直的墙上(1)当人安全使用这架梯子时,求梯子顶端与地面距离的最大值;(2)当梯子底端距离墙面时,计算等于多少度?并判断此时人是否能安全使用这架梯子?(参考数据:,)36(2022湖南株洲)如图1所示,某登山运

12、动爱好者由山坡的山顶点A处沿线段至山谷点处,再从点处沿线段至山坡的山顶点处如图2所示,将直线视为水平面,山坡的坡角,其高度为0.6千米,山坡的坡度,于,且千米(1)求的度数;(2)求在此过程中该登山运动爱好者走过的路程37(2022甘肃武威)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得CAF和CBF的度数(A,

13、B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DFEG,CGAF,FG=DE)数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,CAF=26.6,CBF=35问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数)参考数据:sin26.60.45,cos26.60.89,tan26.60.50,sin350.57,cos350.82,tan350.70根据上述方案及数据,请你完成求解过程38(2022江西)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知,A,D,H,G四点在同一直线上,测

14、得(结果保留小数点后一位)(1)求证:四边形为平行四边形;(2)求雕塑的高(即点G到的距离)(参考数据:)39(2022浙江宁波)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m(1)若ABD=53,求此时云梯AB的长(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由(参考数据:sin530.8,cos

15、530.6,tan531.3)40(2022四川自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心处,另一端系小重物测量时,使支杆、量角器90刻度线与铅垂线相互重合(如图),绕点转动量角器,使观测目标与直径两端点共线(如图),此目标的仰角请说明两个角相等的理由(2)实地测量:如图,公园广场上有一棵树,为了测量树高,同学们在观测点处测得顶端的仰角,观测点与树的距离为5米,点到地面的距离为1.5米;求树高(,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端距离地面高度(如图),同学们讨论,决定先在水平地面上

16、选取观测点 (在同一直线上),分别测得点的仰角,再测得间的距离,点 到地面的距离均为1.5米;求(用表示)41(2022浙江绍兴)圭表(如图是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” 和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ,当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至图2是一个根据某市地理位置设计的圭表平面示意图,表垂直圭,已知该市冬至正午太阳高度角(即为,夏至正午太阳高度角(即为,圭面上冬至线与夏至线之间的距离(即的长)为4米(1)求BAD的度数(2)求表AC

17、的长(最后结果精确到0.1米)(参考数据:sin37,cos37,tan37,tan84)42(2022浙江金华)图1是光伏发电场景,其示意图如图2,为吸热塔,在地平线上的点B,处各安装定日镜(介绍见图3)绕各中心点旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处已知,在点A观测点F的仰角为(1)点F的高度为_m(2)设,则与的数量关系是_43(2022重庆)如图,三角形花园紧邻湖泊,四边形是沿湖泊修建的人行步道经测量,点在点的正东方向,米点在点的正北方向点,在点的正北方向,米点在点的北偏东,点在点的北偏东(1)求步道的长度(精确到个位);(2)点处有直饮水,小红从出发沿人行步道去取

18、水,可以经过点到达点,也可以经过点到达点请计算说明他走哪一条路较近?(参考数据:,)44(2022江苏连云港)我市的花果山景区大圣湖畔屹立着一座古塔阿育王塔,是苏北地区现存最高和最古老的宝塔小明与小亮要测量阿育王塔的高度,如图所示,小明在点处测得阿育王塔最高点的仰角,再沿正对阿育王塔方向前进至处测得最高点的仰角,;小亮在点处竖立标杆,小亮的所在位置点、标杆顶、最高点在一条直线上,(注:结果精确到,参考数据:,)(1)求阿育王塔的高度;(2)求小亮与阿育王塔之间的距离45(2022浙江嘉兴)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2已知,(结果精确到

19、0.1,参考数据:,)(1)连结,求线段的长(2)求点A,B之间的距离 46(2022四川达州)某老年活动中心欲在一房前3m高的前墙()上安装一遮阳篷,使正午时刻房前能有2m宽的阴影处()以供纳凉,假设此地某日正午时刻太阳光与水平地面的夹角为63.4,遮阳篷与水平面的夹角为10,如图为侧面示意图,请你求出此遮阳篷的长度(结果精确到0.1m)(参考数据:,;,)47(2022四川凉山)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C处压折,塔尖恰好落在坡面上的点B处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B处测得BC与水平线的夹角为45,塔

20、基A所在斜坡与水平线的夹角为30,A、B两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号)48(2022安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53方向上求A,B两点间的距离参考数据:,49(2022重庆)湖中小岛上码头C处一名游客突发疾病,需要救援位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援计划由快艇赶到码头C接该游客,再沿方向行驶,与救援船相遇后将该游客转运到救援船上已知C在A的北偏东30方向上,B在A的北偏东

21、60方向上,且B在C的正南方向900米处(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由(接送游客上下船的时间忽略不计)专题16 解直角三角形一选择题1(2022天津)的值等于()A2B1CD【答案】B【分析】根据三角函数定义:正切=对边与邻边之比,进行求解【详解】作一个直角三角形,C=90,A=45,如图:B=90-45=45,ABC是等腰三角形,AC=BC,根据正切定义,A=45,故选 B【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键2

22、(2022四川乐山)如图,在中,点D是AC上一点,连接BD若,则CD的长为()AB3CD2【答案】C【分析】先根据锐角三角函数值求出,再由勾股定理求出过点D作于点E,依据三角函数值可得从而得,再由得AE=2,DE=1,由勾股定理得AD=,从而可求出CD【详解】解:在中, 由勾股定理得, 过点D作于点E,如图, ,在中, 故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE的长是解答本题的关键3(2022浙江杭州)如图,已知ABC内接于半径为1的O,BAC=(是锐角),则ABC的面积的最大值为()A B C D【答案】D【分析】要使ABC的面积S=BCh的最大,则h要

23、最大,当高经过圆心时最大【详解】解:当ABC的高AD经过圆的圆心时,此时ABC的面积最大,如图所示,ADBC,BC=2BD,BOD=BAC=,在RtBOD中,sin= ,cos=,BD=sin,OD=cos,BC=2BD=2sin,AD=AO+OD=1+cos,SABC=ADBC=2sin(1+cos)=sin(1+cos)故选:D【点睛】本题主要考查锐角三角函数的应用与三角形面积的求法4(2022云南)如图,已知AB是O的直径,CD是OO的弦,ABCD垂足为E若AB=26,CD=24,则OCE的余弦值为()ABCD【答案】B【分析】先根据垂径定理求出,再根据余弦的定义进行解答即可【详解】解:

24、AB是O的直径,ABCD,OC=13,故选:B【点睛】此题考查的是垂径定理,锐角三角函数的定义,熟练掌握垂径定理,锐角三角函数的定义是解答此题的关键5(2022陕西)如图,是的高,若,则边的长为()ABCD【答案】D【分析】先解直角求出AD,再在直角中应用勾股定理即可求出AB【详解】解:,直角中,直角中,由勾股定理可得,故选D【点睛】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键6(2022浙江金华)一配电房示意图如图所示,它是一个轴对称图形,已知,则房顶A离地面的高度为()A B C D【答案】B【分析】过点A作ADBC于D,根据轴对称图形得性质即可

25、得BD=CD,从而利用锐角三角函数正切值即可求得答案【详解】解:过点A作ADBC于D,如图所示:它是一个轴对称图形,m,即,房顶A离地面的高度为,故选B【点睛】本题考查解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键7(2022浙江丽水)如图,已知菱形的边长为4,E是的中点,平分交于点F,交于点G,若,则的长是()A3BCD【答案】B【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用AGP=B可得到cosAGP=,即可得到FG的长;【详解】过点A作AH垂直BC于点H,延长FG交AB于点P,由题意可知,AB=BC=4,

26、E是BC的中点,BE=2,又,BH=1,即H是BE的中点,AB=AE=4,又AF是DAE的角平分线,ADFG,FAG=AFG,即AG=FG,又PFAD,APDF,PF=AD=4,设FG=x,则AG=x,EG=PG=4-x,PFBC,AGP=AEB=B,cosAGP=,解得x=;故选B【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键8(2022四川广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cosAPC的值为()ABCD【答案】B【分析】把AB向上平移一

27、个单位到DE,连接CE,则DEAB,由勾股定理逆定理可以证明DCE为直角三角形,所以cosAPCcosEDC即可得答案【详解】解:把AB向上平移一个单位到DE,连接CE,如图则DEAB,APCEDC 在DCE中,有,是直角三角形,且,cosAPCcosEDC故选:B【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键9(2022湖北随州)如图,已知点B,D,C在同一直线的水平,在点C处测得建筑物AB的顶端A的仰角为,在点D处测得建筑物AB的顶端A的仰角为,则建筑物AB的高度为()A B C D【答案】D【分析】设AB=x,利用正切值表示出BC和BD的长,CD=BC-

28、BD,从而列出等式,解得x即可【详解】设AB=x,由题意知,ACB=,ADB=,,CD=BC-BD,即AB=,故选:D【点睛】本题考查了解直角三角形,熟记锐角三角函数的定义是解题的关键二填空题10(2022山东泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角,已知窗户的高度,窗台的高度,窗外水平遮阳篷的宽,则的长度为_(结果精确到)【答案】4.4m#4.4米【分析】根据题意可得ADCP,从而得到ADB=30,利用锐角三角函数可得,从而得到BC=AF+CF-AB=2.54m,即可求解【详解】解:根据题意得:ADCP,DPC=30,ADB=30,AF=2m,CF=1m,BC=AF+CF-A

29、B=2.54m,即的长度为4.4m故答案为:4.4m.【点睛】本题主要考查了解直角三角形、平行线的性质,熟练掌握锐角三角函数是解题的关键11(2022天津)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及的一边上的点E,F均在格点上()线段的长等于_;()若点M,N分别在射线上,满足且请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)_【答案】 见解析【分析】()根据勾股定理,从图中找出EF所在直角三角形的直角边的长进行计算;()由图可找到点Q,即四边形EFBQ是正方形,因为,所以,点M在EQ上,BM、BN与圆的交点为直径端点,所

30、以EQ与PD交点为M,通过BM与圆的交点G和圆心O连线与圆相交于H,所以H在BN上,则延长BH与PF相交点即为N【详解】解:()从图中可知:点E、F水平方向距离为3,竖直方向距离为1,所以,故答案为:;()连接,与竖网格线相交于点O,O即为圆心;取格点Q(E点向右1格,向上3格),连接与射线相交于点M;连接与相交于点G;连接并延长,与相交于点H;连接并延长,与射线相交于点N,则点M,N即为所求,理由如下:连接 由勾股定理算出,由题意得,四边形为正方形,在和中,从而确定了点的位置【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理12(2022江苏

31、扬州)在中,分别为的对边,若,则的值为_【答案】【详解】解:如图所示:在中,由勾股定理可知:, ,即:,求出或(舍去),在中:,故答案为:【点睛】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键在中, ,13(2022湖南衡阳)回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首王安石曾赋诗联“万里衡阳雁,寻常到此回”峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,已知测角仪的高度为,则大雁雕塑的高度约为_(结果精确到参考数据:)【答案】10.2【分析】先根据三角形外角求得,再根据三角形的等角对等

32、边得出BF=DF=AE=10m,再解直角三角形求得BG即可求解【详解】解:且,即,故答案为:【点睛】本题考查了三角形的外角性质、等腰三角形的判定、解直角三角形的应用,熟练掌握等腰三角形的判定和解直角三角形的解题方法是解答的关键14(2022浙江嘉兴)如图,在ABC中,ABC90,A60,直尺的一边与BC重合,另一边分别交AB,AC于点D,E点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_【答案】【分析】先求解 再利用线段的和差可得答案【详解】解:由题意可得: 同理: 故答案为:【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”

33、是解本题的关键15(2022浙江绍兴)如图,点在射线上的动点,连接,作,动点在延长线上,连接,当,时,的长是_【答案】5或【分析】过点C作CNBE于N,过点D作DMCN延长线于M,连接EM,设BN=x,则CN =3x,由ACNCDM可得AN=CM=10+x,CN=DM=3x,由点C、M、D、E四点共圆可得NME是等腰直角三角形,于是NE=10-2x,由勾股定理求得AC可得CE,在RtCNE中由勾股定理建立方程求得x,进而可得BE;【详解】解:如图,过点C作CNBE于N,过点D作DMCN延长线于M,连接EM,设BN=x,则CN=BNtanCBN=3x,CAD,ECD都是等腰直角三角形,CA=CD

34、,EC=ED,EDC=45,CAN+ACN=90,DCM+ACN=90,则CAN=DCM,在ACN和CDM中:CAN=DCM,ANC=CMD=90,AC=CD,ACNCDM(AAS),AN=CM=10+x,CN=DM=3x,CMD=CED=90,点C、M、D、E四点共圆,CME=CDE=45,ENM=90,NME是等腰直角三角形,NE=NM=CM-CN=10-2x,RtANC中,AC=,RtECD中,CD=AC,CE=CD,RtCNE中,CE2=CN2+NE2,x=5或x=,BE=BN+NE=x+10-2x=10-x,BE=5或BE=;故答案为:5或;【点睛】本题考查了三角函数,全等三角形的判

35、定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键16(2022山东泰安)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔的高度,他从古塔底部点处前行到达斜坡的底部点C处,然后沿斜坡前行到达最佳测量点D处,在点D处测得塔顶A的仰角为,已知斜坡的斜面坡度,且点A,B,C,D,在同一平面内,小明同学测得古塔的高度是_【答案】【分析】过D作DFBC于F,DHAB于H,设DF=x m,CF=x m,求出x=10,则BH=DF=+30,CF=m,DH=BF,再求出AH=,即可求解【详解】解:过D作DFBC于F,DHAB于H,DH=BF,BH

36、=DF,斜坡的斜面坡度i=1:,设DF=x m,CF=x m,CD=,x=10,BH=DF=10m,CF=m,DH=BF=+30(m),ADH=30,AH=(m),AB=AH+BH=(m),故答案为:【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键17(2022江苏连云港)如图,在正方形网格中,的顶点、都在网格线上,且都是小正方形边的中点,则_【答案】【分析】如图所示,过点C作CEAB于E,先求出CE,AE的长,从而利用勾股定理求出AC的长,由此求解即可【详解】解:如图所示,过点C作CEAB于E,由题意得,故答案为:【点睛】本题主要考

37、查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键18(2022四川凉山)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为,反射角为(反射角等于入射角),ACCD于点C,BDCD于点D,且AC3,BD6,CD12,则tan的值为_【答案】【分析】如图(见解析),先根据平行线的判定与性质可得,从而可得,再根据相似三角形的判定证出,根据相似三角形的性质可得的长,然后根据正切的定义即可得【详解】解:如图,由题意得:,同理可得:,在和中,解得,经检验,是所列分式方程的解,则,故答案为:【点睛】本题考查了相似三角形的判定与性质、正切等知识点,正确找出两个

38、相似三角形是解题关键19(2022四川凉山)如图,在边长为1的正方形网格中,O是ABC的外接圆,点A,B,O在格点上,则cosACB的值是_【答案】【分析】取AB中点D,由图可知,AB=6,AD=BD=3,OD=2,由垂径定理得ODAB,则OB=,cosDOB=,再证ACB=DOB,即可解【详解】解:取AB中点D,如图,由图可知,AB=6,AD=BD=3,OD=2,ODAB,ODB=90,OB=,cosDOB=,OA=OB,BOD=AOB,ACB=AOB,ACB=DOB,cosACB= cosDOB=,故答案为:【点睛】本题考查勾股定理,垂径定理,圆周角定理,解直角三角形,取AB中点D,得Rt

39、ODB是解题的关键20(2022山东滨州)在RtABC中,C=90,AC=5,BC=12,则sinA=_.【答案】【分析】根据题意画出图形,进而利用勾股定理得出AB的长,再利用锐角三角函数关系,即可得出答案【详解】解:如图所示:C=90,AC=5,BC=12,AB=13,sinA= 故答案为:【点睛】在直角三角形中求正弦函数值是本题的考点,根据勾股定理求出AB的长是解题的关键21(2022湖北黄冈)如图,有甲乙两座建筑物,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离已知乙建筑物的高度为,则甲建筑物的高度为_(,结果保留整数)【答案】【分析】过点作于点,则,在中,设,

40、则,在中,解得,进而可得出答案【详解】解:如图,过点作于点,设,根据题意可得:,四边形是矩形,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离,乙建筑物的高度为,在中,在中,即,解得,经检验是原分式方程的解且符合题意,故答案为:【点睛】本题考查解直角三角形的应用一仰角俯角问题,涉及到锐角三角函数,矩形的判定和性质,等腰三角形的性质,直角三角形两锐角互余,分式方程等知识熟练掌握锐角三角函数的定义是解答本题的关键22(2022四川广元)如图,直尺AB垂直竖立在水平面上,将一个含45角的直角三角板CDE的斜边DE靠在直尺的一边AB上,使点E与点A重合,DE12cm当点D沿DA

41、方向滑动时,点E同时从点A出发沿射线AF方向滑动当点D滑动到点A时,点C运动的路径长为 _cm【答案】【分析】由题意易得cm,则当点D沿DA方向下滑时,得到,过点作于点N,作于点M,然后可得,进而可知点D沿DA方向下滑时,点C在射线AC上运动,最后问题可求解【详解】解:由题意得:DEC=45,DE12cm,cm,如图,当点D沿DA方向下滑时,得到,过点作于点N,作于点M,DAM=90,四边形NAMC是矩形,平分NAM,即点D沿DA方向下滑时,点C在射线AC上运动,当时,此时四边形是正方形,CC的值最大,最大值为,当点D滑动到点A时,点C运动的路径长为;故答案为【点睛】本题主要考查正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理,熟练掌握正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理是解题的关键23(2022湖北宜昌)如图,岛在A岛的北偏东方向,岛在岛的北偏西方向,则的大小是_【答案】【分析】过作交于,根据方位角的定义,结合平行线性质即可求解