ImageVerifierCode 换一换
格式:DOCX , 页数:33 ,大小:1.45MB ,
资源ID:214016      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-214016.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省南通市崇川区2021-2022学年九年级上期末数学试题(含答案解析))为本站会员(有***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

江苏省南通市崇川区2021-2022学年九年级上期末数学试题(含答案解析)

1、2021-2022学年江苏省南通市崇川区九年级上期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 反比例函数y的图象位于()A. 第一、三象限B. 第一、四象限C. 第二、三象限D. 第二、四象限2. 将三个相同正方体搭成如图所示的几何体,则该几何体的主视图是()A. B. C. D. 3. 已知为锐角,且,则 ()A. B. C. D. 4. 抛物线yx2+2x的对称轴为()A. x1B. x1C. x2D. y轴5. 如图,点A,B,C,D,E在O上,AOB36,则CED的度数为()A. 72B. 36C. 18D. 166. 如图,坡角为的斜坡AB长5米,若tan,则

2、BC的长为()A. 米B. 5米C. 10米D. 5米7. 如图,网格中的每个小正方形边长为1,点A,B都在小正方形的顶点上,线段AB与网格线MN交于点C,则AC的长为()A. B. C. D. 8. 如图所示,点D、E、F分别位于ABC的三边上,且DEBC,EFAB如果ADE的面积为2,CEF的面积为8,则四边形BFED的面积是()A. 10B. 8C. 6D. 49. 点A(m,y1),B(n,y2)均在抛物线y(xh)2+7上,若|mh|nh|,则下列说法正确是()A. y1+y20B. y1y20C. y1y20D. y1y2010. 在平面直角坐标系xOy中,以P(0,1)为圆心,P

3、O为半径作圆,M为P上一点,若点N的坐标为(3a,4a+4),则线段NM的最小值为()A. 2B. 2C. 4D. 2二、填空题(本大题共8小题,1112每小题3分,1318每小题3分,共30分)11. 如图,AOB与COD是位似图形,且OAAC,则与的相似比为_12. 若扇形的圆心角为,半径为,则该扇形的弧长为_13. 如图,在半径为5的O中,M为弦AB的中点若OM1,则AB的长为_14. 已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形,则该几何体的侧面展开图的面积是_(结果保留)15. 九章算术是中国古代的数学专著,书中记载了这样一个问题:“今有句五步,股

4、十二步问句中容方几何”其大意是:如图,Rt的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_16. 如图,将等腰直角三角形ABC沿底边BC所在直线平移,当点B移到点C处时,连接BD,则tanDBC_17. 二次函数yx22mx+2m+3的顶点纵坐标为p,当m2时,p的最大值为 _18. 如图,在平面直角坐标系中,反比例函数(x0)的图象交矩形OABC的边AB于点M(1,2),交边BC于点N,若点B关于直线MN的对称点B恰好在x轴上,则OC的长为_三、解答题(本大题共8小题,共90分)19. (1)计算:tan602cos30+sin45;(2)已知RtABC中,C90,A30,

5、BC=,解这个直角三角形20. 如图,在平面直角坐标系中,直线yx+5与反比例函数y(x0)图像交于A(1,m)和点B(1)求反比例函数的解析式;(2)写出当x0时,关于x的不等式x+5的解集21. 如图,某施工队要测量索道BC的长度,已知索道BC在直线AC上,DAAC,AD60m,测得仰角为45,再从点E处看向C,求索道BC的长(参考数据:sin53,cos53,tan53)22. 某疫苗生产企业于2021年1月份开始技术改造,其月生产数量y(万支)与月份x之间的变化如图所示,技术改造完成后是一次函数图象的一部分,请根据图中数据解答下列问题:(1)该企业4月份的生产数量为多少万支?(2)该企

6、业有几个月的月生产数量不超过90万支?23. 如图,AB为O的直径,PQ切O于E,ACPQ于点C,交O于D(1)求证AE平分BAC;(2)若OA5,EC4,求AD长24. 已知抛物线yax24ax+3a与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(0,3)(1)求抛物线的顶点坐标;(2)点P是抛物线上一点,过点P作PQx轴交直线yx+t于点Q若点P在第二象限内,t3,PQ6,求点P的坐标;若恰好存在三个点P,使得PQ,求t的值25. 数学兴趣小组开展实践探究活动,将三角形ABC纸片沿某条直线折叠,使其中一个角的顶点落在一边上在ABC中,AB9,BC6(1)如图1,若ACB90,将AB

7、C沿CM折叠,使点B与边AB上点N重合,求BM的长(2)如图2,若ACB2A,将ABC沿CM折叠,使点B与边AC上的点N重合,求AC的长;若O是AC的中点,P为线段ON上的一个动点,将APM沿PM折叠得到APM,与相交于点,则的取值范围为26. 对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,N两点间的距离有最小值,那么称这个最小值为图形P,记作d(P,Q)(1)记二次函数yx22x+3的图象为图形P,则d(x轴,P) ;(2)如图1,已知反比例函数的图象为图形Q,直线l的函数解析式为,若d(1,Q),求b的值;(3)如图2,ABC的顶点坐标分

8、别为A(4,0),B(0,4),C(3,2),T的圆心为(t,0),半径为2,若d(T,ABC)m,当时,求t的取值范围2021-2022学年江苏省南通市崇川区九年级上期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 反比例函数y的图象位于()A. 第一、三象限B. 第一、四象限C. 第二、三象限D. 第二、四象限【答案】D【解析】【分析】根据反比例函数的比例系数来判断图象所在的象限,k0,位于一、三象限;k0,位于二、四象限【详解】解:y,k10,函数图象过二、四象限故选:D【点睛】本题考查反比例函数的图象和性质,解题关键是明确反比例函数y,k0,图象位于一、三象限;k0

9、,图象位于二、四象限2. 将三个相同的正方体搭成如图所示的几何体,则该几何体的主视图是()A. B. C. D. 【答案】D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图根据图中正方体摆放的位置判定则可【详解】解:从正面看,底层是两个小正方形,上层的左边是一个小正方形故选:D【点睛】本题考查了三种视图中的主视图,正确理解主视图的定义,树立空间观念是解题关键3. 已知为锐角,且,则 ()A. B. C. D. 【答案】A【解析】【分析】根据特殊角的三角函数值解答【详解】为锐角,且,故选A【点睛】此题考查的是特殊角的三角函数值,属较简单题目4. 抛物线

10、yx2+2x的对称轴为()A. x1B. x1C. x2D. y轴【答案】A【解析】【分析】根据抛物线y=ax2+bx+c的对称轴是 进行计算即可以得出答案【详解】解:抛物线yx2+2x中,a=-1,b=2,抛物线yx2+2的对称轴是直线故选A【点睛】此题考查了抛物线的对称轴的求法,能够熟练运用公式法求解,也能够运用配方法求解5. 如图,点A,B,C,D,E在O上,AOB36,则CED的度数为()A. 72B. 36C. 18D. 16【答案】C【解析】【分析】点A,B,C,D,E在O上,AOB36,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得CED的度数【

11、详解】解:点A,B,C,D,E在O上,AOB36,故选C【点睛】此题考查了圆周角定理熟练掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半这一定理是解题的关键6. 如图,坡角为的斜坡AB长5米,若tan,则BC的长为()A. 米B. 5米C. 10米D. 5米【答案】B【解析】【分析】设BCx米,根据正切的定义用x表示出AC,根据勾股定理列出方程,解方程得到答案【详解】解:设BCx米,tan,AC2x米,在RtABC中,AB2AC2+BC2,即(5)2x2+(2x)2,解得:x15,x25(舍去),则BC5米,故选:B【点睛】本题考查度数解直角三角形的应用坡度坡角问题,准确

12、掌握正切的定义是解题的关键7. 如图,网格中的每个小正方形边长为1,点A,B都在小正方形的顶点上,线段AB与网格线MN交于点C,则AC的长为()A. B. C. D. 【答案】C【解析】【分析】先利用勾股定理求出AB的长,再利用A字模型相似三角形证明ANCADB,然后利用相似三角形的性质进行计算即可解答【详解】解:如图:由题意得:AB= =5,CN/BD,ANC=ADB,ACN=ABD,ANCADB,AC=,故选:C【点睛】本题考查了勾股定理,相似三角形的判定与性质,熟练掌握A字模型相似三角形是解题的关键8. 如图所示,点D、E、F分别位于ABC的三边上,且DEBC,EFAB如果ADE的面积为

13、2,CEF的面积为8,则四边形BFED的面积是()A. 10B. 8C. 6D. 4【答案】B【解析】【分析】根据已知条件证明相似三角形面积比等于相似比的平方可得,设,则,再证明,利用相似三角形面积比等于相似比的平方即可得结论【详解】解:,而,设,则,则,设;,即,解得:,即四边形的面积为8故选:B【点睛】考查了相似三角形的判定与性质,熟悉相关性质是解题的关键9. 点A(m,y1),B(n,y2)均在抛物线y(xh)2+7上,若|mh|nh|,则下列说法正确的是()A. y1+y20B. y1y20C. y1y20D. y1y20【答案】D【解析】【分析】根据二次函数的对称性确定出y1与y2的

14、大小关系,然后对各选项分析判断即可得解【详解】解: y(xh)2+7 抛物线的开口向上,对称轴为x=h,|mh|nh|,点A与对称轴的距离大于点B与对称轴的距离,y1y2,y1y2,y1y20故选:D【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性,难点在于二次函数图像上的点与对称轴的距离大小关系确定确定函数值的大小关系10. 在平面直角坐标系xOy中,以P(0,1)为圆心,PO为半径作圆,M为P上一点,若点N的坐标为(3a,4a+4),则线段NM的最小值为()A. 2B. 2C. 4D. 2【答案】A【解析】【分析】首先我们先判断MN最短时,M的位置,线段PN与圆的交

15、点为M,此时MN值最小利用勾股定理列出线段PN的长度函数表达式,求出该函数的最小值,减去半径即为所求【详解】设函数,开口向上,当时,函数取得最小值,所以PN长度的最小值为3,且大于半径,故和圆不相交,圆的半径为1,所以MN=PN-PM=2故答案为:A【点睛】本题考察了点到圆的距离问题,利用勾股定理列出二次函数求解是解决本题的要点点到圆的距离我们可以记住规律,最大值是点到圆心的距离加半径,最小值为点到圆心的距离减半径二、填空题(本大题共8小题,1112每小题3分,1318每小题3分,共30分)11. 如图,AOB与COD是位似图形,且OAAC,则与的相似比为_【答案】#【解析】【分析】根据位似图

16、形的性质,即可求解【详解】解:OAAC,AOB与COD是位似图形,AOBCOD,与的相似比为故答案为:【点睛】本题主要考查了位似图形的性质,熟练掌握位似图形的性质是解题的关键12. 若扇形的圆心角为,半径为,则该扇形的弧长为_【答案】【解析】【分析】根据弧长公式求解即可【详解】扇形的圆心角为,半径为,则弧长故答案为:【点睛】本题考查了弧长计算,熟记弧长公式是解题的关键13. 如图,在半径为5O中,M为弦AB的中点若OM1,则AB的长为_【答案】4【解析】【分析】连接OA,根据垂径定理的推论得到OMAB,根据勾股定理求出AM,得到答案【详解】解:连接OM,OA,M为AB的中点,OM过圆心O,OM

17、AB,AMBM,OMA90,由勾股定理得:BMAM2,ABAM+BM2+24,故答案为:4【点睛】本题考查了垂径定理和勾股定理,能熟记平分弦(弦不是直径)的直径垂直于弦是解此题的关键14. 已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形,则该几何体的侧面展开图的面积是_(结果保留)【答案】【解析】【分析】由三视图可知,该几何体是圆锥,根据圆锥是侧面积公式计算即可【详解】由三视图可知,该几何体是圆锥,侧面展开图的面积,故答案为【点睛】本题考查三视图,圆锥等知识,解题的关键是记住圆锥的侧面积公式15. 九章算术是中国古代的数学专著,书中记载了这样一个问题:“今有句

18、五步,股十二步问句中容方几何”其大意是:如图,Rt的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_【答案】【解析】【分析】由题意可判断 ,利用三角形相似性质可得 ,又BC=12,AC=5,BF=BC-CF=12-EF,代入可求EF,即得正方形CDEF的边长【详解】解: 四边形CDEF为正方形, 又又BC=12,AC=5,BF=BC-CF=12-EF解得:EF=故答案为:【点睛】本题考查了相似三角形的判定和性质,熟记三角形相似的判定定理及性质是解本题的关键16. 如图,将等腰直角三角形ABC沿底边BC所在直线平移,当点B移到点C处时,连接BD,则tanDBC_【答案】【解析】【

19、分析】作DFBE于F,设ABa根据平移的性质以及等腰直角三角形的性质得出DFCFFECEa,BFBC+CFa,再根据正切函数定义即可求解【详解】解:如图,作DFBE于F,设ABa将等腰直角三角形ABC沿底边BC所在直线平移,当点B移到点C处时,记平移所得三角形为DCE,ABCDCE,ABACDCDEa,BCCEa,ACDE90,DFCFFECEa,BFBC+CFa+aa,tanDBC故答案为:【点睛】本题考查了解直角三角形,平移的性质,等腰直角三角形的性质,准确作出辅助线构造以DBC为一个内角的直角三角形是解题的关键17. 二次函数yx22mx+2m+3的顶点纵坐标为p,当m2时,p的最大值为

20、 _【答案】3【解析】【分析】先将二次函数的解析式化成顶点式,从而可得其顶点纵坐标的值,再利用二次函数的性质求最值即可得【详解】解:二次函数,其顶点纵坐标,由二次函数的性质可知,当时,随的增大而减小,则当时,取得最大值,最大值为,故答案为:3【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的性质是解题关键18. 如图,在平面直角坐标系中,反比例函数(x0)的图象交矩形OABC的边AB于点M(1,2),交边BC于点N,若点B关于直线MN的对称点B恰好在x轴上,则OC的长为_【答案】#【解析】【分析】过点M作MQOC,垂足为Q,连接MB,NB,由于四边形OABC是矩形,且点B和点B关于直线

21、MN对称且点B正好落在边OC上,可得MBQBNC,然后M、N两点的坐标用含a的代数式表示出来,再由相似三角形对应边成比例求出BC和QB的长,然后利用勾股定理求出MB的长,进而求出OC的长【详解】解:过点M作MQOC,垂足为Q,连接MB,NB,如图所示:反比例函数(x0)的图象过点M(1,2),k122,y,设N( a,),则B(a,2),又点B和点B关于直线MN对称,MBMB,BMBN90,MQBBCN90,MBQ+NBC90又NBC+BNC90,MBQBNC,MBQBNC,即 ,解得:BC,QB1,OQ1,a1,OCa故答案为:【点睛】本题属于反比例函数与几何综合题,涉及待定系数法求函数表达

22、式,勾股定理,相似三角形的性质与判定等知识,作出辅助线构造相似是解题关键三、解答题(本大题共8小题,共90分)19. (1)计算:tan602cos30+sin45;(2)已知RtABC中,C90,A30,BC=,解这个直角三角形【答案】(1)1;(2)B60,AC3,AB2【解析】【分析】(1)将特殊角的三角函数值代入,再根据实数的混合运算法则计算即可;(2)根据直角三角形的边角关系求出B,AC、AB即可【详解】解:(1)tan602cos30+sin452,+11;(2)在RtABC中,C90,A30,BC,B90A903060,AB2BC2,tanA,AC3,B60,AC3,AB2【点睛

23、】本题考查了解直角三角形,特殊角三角函数值,掌握直角三角形的边角关系是正确解答的关键20. 如图,在平面直角坐标系中,直线yx+5与反比例函数y(x0)的图像交于A(1,m)和点B(1)求反比例函数的解析式;(2)写出当x0时,关于x的不等式x+5的解集【答案】(1)y (2)1x4【解析】【分析】(1)利用一次函数图象上点的坐标特征即可得出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数的解析式;(2)两解析式联立成方程组,解方程组求得B的坐标,然后根据两函数图象的上下关系即可得出不等式的解集【小问1详解】解:点A(1,m)在直线yx+5上,m1+54,A(1,4),点A(1,4)

24、在反比例函数y(x0)的图象上,k144,反比例函数的解析式为y;【小问2详解】解:把两个函数解析式联立得,解得:或,B(4,1),观察函数图象,当x0时,在A、B两点之间时,反比例函数值比一次函数值小,故关于x的不等式x+5的解集是1x4【点睛】本题考查了反比例函数与一次函数的交点问题,一次函数图象上点的坐标特征、待定系数法求反比例函数解析式,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据函数图象的位置关系解不等式21. 如图,某施工队要测量索道BC的长度,已知索道BC在直线AC上,DAAC,AD60m,测得仰角为45,再从点E处看向C,求索道BC的长(参考数据:sin53,c

25、os53,tan53)【答案】隧道BC长约为25m【解析】【分析】过C作CMDE于M,先证ABAD60m,再由锐角三角函数定义得EMCM45(m),则ACDMEMDE85(m),即可得出答案【详解】解:过C作CMDE于M,如图所示:则CMAD60m,ACDM,在RtABD中,ADB904545,ABD是等腰直角三角形,ABAD60m,在RtCEM中,tanCEMtan53,EMCM45(m),ACDMEMDE454085(m),BCACAB856025(m),答:隧道BC长约为25m【点睛】本题考查了解直角三角形的应用仰角俯角问题,正确作出辅助线构造直角三角形是解题的关键22. 某疫苗生产企业

26、于2021年1月份开始技术改造,其月生产数量y(万支)与月份x之间的变化如图所示,技术改造完成后是一次函数图象的一部分,请根据图中数据解答下列问题:(1)该企业4月份的生产数量为多少万支?(2)该企业有几个月的月生产数量不超过90万支?【答案】(1)45万支 (2)该疫苗生产企业有6个月的月生产数量不超过90万支【解析】【分析】(1)根据题意和图象中的数据,可以计算出技术改造完成前对应的函数解析式,然后将x4代入求出相应的y的值即可;(2)根据题意和图象中的数据,可以技术改造完成后y与x的函数解析式,然后即可列出相应的不等式组,求解即可,注意x为正整数【小问1详解】解:当1x4时,设y与x的函

27、数关系式为y,点(1,180)在该函数图象上,180,得k180,y,当x4时,y45,即该疫苗生产企业4月份的生产数量为45万支;【小问2详解】解:设技术改造完成后对应的函数解析式为yax+b,点(4,45),(5,60)在该函数图象上,解得,技术改造完成后对应的函数解析式为y15x15,解得2x7x为正整数,x2,3,4,5,6,7,答:该疫苗生产企业有6个月的月生产数量不超过90万支【点睛】本题考查反比例函数的应用、一次函数的应用、一元一次不等式组的应用,求出一次函数和反比例函数解析式是解答本题的关键23. 如图,AB为O的直径,PQ切O于E,ACPQ于点C,交O于D(1)求证AE平分B

28、AC;(2)若OA5,EC4,求AD的长【答案】(1)见解析 (2)6【解析】【分析】(1)连接OE,根据切线性质得到OEPQ,根据平行线的性质得到OEA=EAC,根据等腰三角形的性质得到OEA=OAE,等量代换证明结论;(2)过点O作OFAC于F,根据勾股定理求出AF,根据垂径定理解答即可【小问1详解】如图1,连接,由题意知,AE平分BAC小问2详解】如图2,连接交于点 ,垂直平分四边形是矩形在中,由勾股定理得AD的长为6【点睛】本题考查的是切线的性质、垂径定理、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键24. 已知抛物线yax24ax+3a与x轴交于A,B两点(点A在点B

29、左侧),与y轴交于点C(0,3)(1)求抛物线的顶点坐标;(2)点P是抛物线上一点,过点P作PQx轴交直线yx+t于点Q若点P在第二象限内,t3,PQ6,求点P的坐标;若恰好存在三个点P,使得PQ,求t的值【答案】(1)抛物线顶点坐标为(2, -1); (2)点P坐标为(-1,8);t =-1【解析】【分析】(1) 把(0,3)代入yax24ax+3a求出a的值,把a的值代入原抛物线,利用配方法求出顶点坐标即可;(2)设点P坐标为(m,m2-4m+ 3),根据点P在第二象限求出p点的取值范围,利用t3求出直线的表达式,从而利用PQ6求出答案;由恰好有3个点P,使得,得到Q的位置,从而构造方程x

30、+t-(x2-4x+3) =时,方程有2 个相等实数解求出t的值,【小问1详解】解:把(0,3)代入yax24ax+3a得3=3a,a=1, y=x2-4x +3=(x- 2)2-1,抛物线顶点坐标为(2, -1);【小问2详解】设点P坐标为(m,m2-4m+ 3),点P在第二象限, m 0,解得m 0,当t=3时,直线y=x+3,点Q坐标为(m,m + 3), PQ6, PQ = |m2-4m+3- (m+3)|= 6, 当m2-4m+3- (m +3)= 6时,解得m= - 1或m= 6(舍),当m2-4m+ 3- (m+3)=-6时,解得m= 2(舍)或m = 3(舍) 点P坐标为(-1

31、,8)当有3个点P,使得时,点Q在点P上方时只有1个符合题意, x+t-(x2-4x+3) =时,方程有2 个相等实数解,即方程x2-5x+-t=0中=,解得t =-1【点睛】本题主要考查了求二次函数的解析式和定点以及二次函数与一次函数的综合应用,学会利用数形结合的思想是解题的关键25. 数学兴趣小组开展实践探究活动,将三角形ABC纸片沿某条直线折叠,使其中一个角顶点落在一边上在ABC中,AB9,BC6(1)如图1,若ACB90,将ABC沿CM折叠,使点B与边AB上的点N重合,求BM的长(2)如图2,若ACB2A,将ABC沿CM折叠,使点B与边AC上的点N重合,求AC的长;若O是AC的中点,P

32、为线段ON上的一个动点,将APM沿PM折叠得到APM,与相交于点,则的取值范围为【答案】(1); (2);【解析】【分析】(1)由题意得,从而可得,然后证明,利用相似三角形的对应边成比例即可以求出答案,(2)由ACB2A及将ABC沿CM折叠,使点B与边AC上的点N重合,得,从而论证,利用相似三角形三边对应成比例求出答案;利用折叠得到,从而得到,利用相似三角形的性质得到,再根据最长为OA的长,最短为AN的长,从而求出答案.【小问1详解】解:如图1,将ABC沿CM折叠,使点B与边AB上的点N重合,ACB90,AB9,BC6,;【小问2详解】解:如图2,将ABC沿CM折叠,使点B与边AC上的点N重合

33、,BC6,ACB2A,AB9,BC6,;,AB9,;,AB9,BC6,;如图4,将APM沿PM折叠得到APM,P为线段ON上的一个动点,最长,最短,故答案为:【点睛】本题考查了折叠的性质、相似三角形的判定及其性质,熟练掌握这些性质定理找到三角形相似是解决问题的关键26. 对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,N两点间的距离有最小值,那么称这个最小值为图形P,记作d(P,Q)(1)记二次函数yx22x+3的图象为图形P,则d(x轴,P) ;(2)如图1,已知反比例函数的图象为图形Q,直线l的函数解析式为,若d(1,Q),求b的值;(3)

34、如图2,ABC的顶点坐标分别为A(4,0),B(0,4),C(3,2),T的圆心为(t,0),半径为2,若d(T,ABC)m,当时,求t的取值范围【答案】(1)2 (2) (3)或【解析】【分析】(1)求出抛物线的顶点坐标为(1,2),即可求出d(x轴,P)2(2)向上平移直线l,与双曲线相切于点E,得直线,设直线l与y轴交点为A,与x轴交点为B,直线与y轴交点为C,过点A作ADCE于D,求出CAD=45,得到 设直线的解析式为y-xa,求出,再由d(l,Q),求出,即可求出,同理向下平移时可以求出;(3)分两种情况:当点T(t,0)在BC右侧时;当点T在A左侧时分别求出t的取值范围即可【小问

35、1详解】解:二次函数解析式为,抛物线的顶点坐标为(1,2),d(x轴,P)2,故答案为:2;【小问2详解】解:向上平移直线l,与双曲线相切于点E,得直线,设直线l与y轴交点为A,与x轴交点为B,直线与y轴交点为C,过点A作ADCE于D,点A的坐标为(0,b),点B的坐标为(b,0),OA=OB,OAB=OBA=45,ABCD,BAD=ADC=90,CAD=45, 设直线的解析式为y-xa,令,由题意得,0,即a2-160,(负值已经舍去),d(l,Q),;同理向下平移直线l,与双曲线相切时,可求出,综上所述,;【小问3详解】如图2,当点T(t,0)在BC右侧时,过点T作TGBC于点G,则,由B(0,4)、C(3,-2)知BC所在直线解析式为y=-2x+4,当y0时x2,则E(2,0),若,当圆T刚好与BC相切时,TG2,此时解得;若,则TG4,此时,解得;当点T在A左侧时,若则,此时;若,则,此时;综上可得,t的取值范围是或【点睛】此题考查了新定义下的运算问题,解题的关键是掌握二次函数、反比例函数、一次函数的解析式以及性质、新定义下的运算规则、相似三角形的性质以及判定定理、圆的性质、解绝对值方程和一元一次方程