ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:327.92KB ,
资源ID:211043      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-211043.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(湖南省长沙市开福区二校联考2022年中考数学第一次适应性试卷(含答案解析))为本站会员(有***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

湖南省长沙市开福区二校联考2022年中考数学第一次适应性试卷(含答案解析)

1、 湖南省长沙市开福区湖南省长沙市开福区二校联考二校联考 2021-2022 学年中考数学第一次适应性试卷学年中考数学第一次适应性试卷 一、选择题(本大题共 10 小题,共 30 分) 1. 9的算术平方根是( ) A. 3 B. 3 C. 3 D. 9 2. 下列运算正确的是( ) A. 2+ 3= 5 B. 2 3= 5 C. (32)3= 96 D. 6 3= 2 3. 京张高铁、京礼高速两条北京冬奥会重要交通保障设施投入使用后,将张家口、崇礼、延庆与北京城区串成一线京张高铁开通运营一年累计发送旅客6800000人,大幅提升了京张两地通行能力,将6800000用科学记数法表示为( ) A.

2、 6.8 105 B. 6.8 106 C. 68 105 D. 0.68 107 4. 下列立体图形中,主视图是圆的是( ) A. B. C. D. 5. 下列一元二次方程中无实数解的方程是( ) A. 2+ 2 + 1 = 0 B. 2+ 1 = 0 C. 2= 2 1 D. 2 4 5 = 0 6. 菱形不具备的性质是( ) A. 四条边都相等 B. 是轴对称图形 C. 对角线一定相等 D. 是中心对称图形 7. 将抛物线 = 32平移,得到抛物线 = 3( 1)2 2,下列平移方式中,正确的是( ) A. 先向左平移1个单位,再向上平移2个单位 B. 先向左平移1个单位,再向下平移2个

3、单位 C. 先向右平移1个单位,再向上平移2个单位 D. 先向右平移1个单位,再向下平移2个单位 8. 如图,直线和直线平行,1 = 75,2 = 35,则3的度数是( ) A. 55 B. 75 C. 30 D. 40 9. 若 0,则函数 = + 的图象可能是( ) 第 2 页,共 19 页 A. B. C. D. 10. 如图, 是 的弦, , 垂足为点, 将劣弧沿弦折叠交于的中点,若 = 210,则 的半径为( ) A. 22 B. 23 C. 32 D. 33 二、填空题(本大题共 6 小题,共 18 分) 11. 分解因式:22 8的结果为_ 12. 一组数据:0,1,2,3,3,

4、5,5,10的中位数是_ 13. 120的圆心角所对的弧长是2,则此弧所在的圆的半径为_ 14. 如图, 在平行四边形中, 是边上的一点, 交于, 若 = 3, = 2,则=_ 15. 已知点( 1,2)与点(2, + 1)关于轴对称,则 + 的值为_ 16. 如图,在 中以点为圆心,以为半径作弧,分别交、于点,连接,若 = , = 4. = 5,则=_ 三、计算题(本大题共 1 小题,共 6 分) 17. 计算:8 (2019 )0 445 + (13);2 四、解答题(本大题共 8 小题,共 66 分) 18. 先化简,再求值:(1 1:1) 2;2:2:1,从1,0,1,2中选择一个合适

5、的数代入求值 19. 如图,已知 , = 90, .点在上,且到边和的距离相等 (1)用直尺和圆规,作出点的位置(不写作法,保留作图痕迹); (2)连结,若 = 36,求的度数 20. 八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计 1 根据图表提供的信息,解答下列问题: (1)八年级一班有多少名学生? (2)请补全频数分布表,并求出扇形统计图中“其他”类所

6、占的百分比; (3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同第 4 页,共 19 页 学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率 21. 如图,在中, = ,、分别是和的中点 (1)求证:四边形是矩形; (2)若 = 60, = 8,求的面积 22. 某中学开学初到商场购买、两种品牌的足球,购买种品牌的足球50个,种品牌的足球25个,共花费4500元已知购买一个种品牌的足球比购买一个种品牌的足球多花30元 (1)求购买一个种品牌、一个种品牌的足球各需多少元? (2)学校为了响应习总书记“足球进校园”的号召,

7、决定再次购进、两种品牌足球共50个,正好赶上商场对商品价格进行调整, 品牌足球售价比第一次购买时提高4元, 品牌足球按第一次购买时售价的9折出售,如果学校此次购买、两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的种品牌足球不少于23个,则这次学校有哪几种购买方案? 23. 如图, 为 的直径, 切 于点, 交 于点, 点在上,交 于点,且 = 2, 于点,连接 (1)求的度数; (2)求证: ; (3)若 = 60, = 2,求 的半径长 24. 设( = 1,2,3,)为任意代数式,我们规定: = *1,2,3,+表示1,2,中的最大值,如 = *1,2+ = 2 (1)求 =

8、 *,3+; (2)借助函数图象,解决以下问题: 解不等式 * + 1,2+ 2 若函数 = *| 1|,12 + ,2 4 + 3+的最小值为1,求实数的值 25. 如图所示, 将矩形纸片折叠, 使得顶点与边上的动点重合(点不与、 重合), 为折痕,点、分别在边、上连接、,其中,与相交于点. 过点、 (1)求证: ; (2)若 = ,求证: 为等腰直角三角形; (3)随着点的运动,若 与相切于点,又与相切于点,且 = 4,求 的直径 第 6 页,共 19 页 答案和解析答案和解析 1.【答案】 【解析】解: 32= 9, 9的算术平方根是3 故选 C 根据算术平方根的定义求解 本题考查了算术

9、平方根的定义,算术平方根是正数的正的平方根,0的算术平方根是0,负数没有算术平方根 2.【答案】 【解析】解:、2与3不属于同类项,不能合并,故 A不符合题意; B、2 3= 5,故 B符合题意; C、(32)3= 276,故 C不符合题意; D、6 3= 3,故 D不符合题意; 故选: 利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,积的乘方的法则对各项进行运算即可 本题主要考查积的乘方,同底数幂的乘法,同底数幂的除法,合并同类项,解答的关键是对相应的运算法 则的掌握 3.【答案】 【解析】解:6800000 = 6.8 106 故选: 用科学记数法表示较大的数时,一般形式

10、为 10,其中1 | 10,为整数,且比原来的整数位数少1,据此判断即可 此题主要考查了用科学记数法表示较大的数,一般形式为 10,其中1 | 10,确定与的值是解题的关键 4.【答案】 【解析】解:、的主视图是圆,故 A符合题意; B、的主视图是矩形,故 B不符合题意; C、的主视图是三角形,故 C 不符合题意; D、的主视图是正方形,故 D 不符合题意; 故选: 根据从正面看得到的图形是主视图,可得答案 本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键 5.【答案】 【解析】解:.这里 = 1, = 2, = 1, = 4 4 = 0, 方程有两个相等的实数根,本选项不合题意

11、; B.这里 = 1, = 0, = 1, = 4 0, 第 8 页,共 19 页 方程有两个不相等的实数根,本选项不合题意, 故选 B 找出各项方程中,及的值,进而计算出根的判别式的值,找出根的判别式的值小于0时的方程即可 此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根 6.【答案】 【解析】解:.菱形的四条边都相等,故本选项不合题意; B.菱形是轴对称图形,故本选项不合题意; C.菱形的对角线不相等,故本选项符合题意; D.菱形是中心对称图形,故本选项不合题意; 故选: 根据菱形的性质

12、解答即可 本题考查了菱形的性质,掌握菱形的性质以及轴对称图形和中心对称图形的定义是解答本题的关键 7.【答案】 【解析】解: = 32的顶点坐标为(0,0), = 3( 1)2 2的顶点坐标为(1,2), 将抛物线 = 32向右平移1个单位,再向下平移2个单位,可得到抛物线 = 3( 1)2 2 故选: 找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到 本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键 8.【答案】 【解析】解:如图, 直线/, 4 = 1 = 75, 由三角形的外角性质得,3 = 4 2 = 75 35 = 40 故选: 根据

13、两直线平行,同位角相等可得4 = 1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解 本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键 9.【答案】 【解析】 【分析】 根据 0,可知 0, 0或 0, 0, 0或 0, 0, 0时, 直线经过一、二、三象限, 当 0, 0 直线经过二、三、四象限, 故选: 10.【答案】 【解析】解:连接,设半径为, 将劣弧沿弦折叠交于的中点, =23, , = 210, =12 = 10, 2 2= 2, 2 (23)2= (10)2, 解得, = 32或 = 32(舍去), 第 10

14、页,共 19 页 故选: 连接,设半径为,用表示,根据勾股定理建立的方程,便可求得结果 本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是根据勾股定理列出半径的方程 11.【答案】2( + 2)( 2) 【解析】解:22 8 = 2(2 4) = 2( + 2)( 2) 故答案为:2( + 2)( 2) 首先提取公因式2,进而利用平方差公式进行分解即可 此题主要考查了提取公因式法以及公式法分解因式,熟练利用乘法公式分解因式是解题关键 12.【答案】3 【解析】解:将这组数据从小到大排列为:0,1,2,3,3,5,5,10, 最中间两个数的平均数是:(3 + 3) 2 = 3, 则中位数是3

15、; 故答案为:3 根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可 此题考查了中位数, 掌握中位数的概念是解题的关键, 中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数) 13.【答案】3 【解析】解:由题意得, = 120, = 2, 故可得:2 =180, 解得: = 3 故答案为:3 根据弧长的计算公式 =180,将及的值代入即可得出半径的值 此题考查了弧长的计算,解答本题的关键是熟练记忆弧长的计算公式,属于基础题,难度一般 14.【答案】35 【解析】解:在平行四边形中,/, = = + = 5, = , = , , =3

16、5, 故答案为:35 根据平行四边形的性质求出,证明 ,求出相似比即可得出答案 本题考查相似三角形的性质与判定,熟练掌握平行四边形的性质及相似三角形的性质与判定是解题关键 15.【答案】0 【解析】解:点( 1,2)与点(2, + 1)关于轴对称, 1 = 2, + 1 = 2, 解得: = 1, = 1, 则 + = 0 故答案为:0 直接利用关于轴对称点的性质得出答案 此题主要考查了关于轴对称点的性质,正确记忆横纵坐标的关系是解题关键 16.【答案】817 【解析】解:连接, = , = , = , = = , 在 和 中 = = = , 第 12 页,共 19 页 (), = = = ,

17、 + = 180, + = 180, = , = , , =, 45=5, =254, = =94 : = 4:94= 16:9, :四边形= 16:18, := 16:(16 + 18) = 8:17 故答案为:817 连接.先证明 ,求出、,即可解决问题 本题考查全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型 17.【答案】解:原式= 22 1 22 + 9 = 8 【解析】本题主要考查了实数运算,正确化简各数是解题关键 直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别代入得出答案

18、 18.【答案】解:原式= (:1:11:1) (;1)(:1)2 = + 1( + 1)2( 1) =:1;1, 当 = 2时,原式=2:12;1= 3 【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的的值代入计算可得 本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则 19.【答案】解:(1)如图,点即为所求; (2) = 90, = 36, = 90 36 = 54, 平分, =12 = 27 【解析】(1)作的角平分线交于点,点即为所求; (2)利用三角形内角和定理,角平分线的定义求解即可 本题考查作图基本作图,角平分线的性质,三角形内角和

19、定理等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型 20.【答案】解:(1) 喜欢散文的有10人,频率为0.25, 总人数= 10 0.25 = 40(人); (2)频数分布表如下: 类别 频数(人数) 频率 小说 20 0.5 戏剧 4 0.1 散文 10 0.25 其他 6 0.15 合计 40 1 在扇形统计图中,“其他”类所占的百分比为640 100% = 15%, 故答案为:15%; (3)画树状图,如图所示: 第 14 页,共 19 页 所有等可能的情况有12种,其中恰好是丙与乙的情况有2种, (丙和乙) =212=16 【解析】此题考查了列表法与树状图法,用到的知识点

20、为:概率=所求情况数与总情况数之比 (1)用散文的频数除以其频率即可求得样本总数; (2)先补全频数分布表,然后根据其他类的频数和总人数求得其百分比即可; (3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率 21.【答案】证明:(1) 四边形是平行四边形, /, = , 、分别是和的中点, = ,/, = , 四边形是平行四边形, 又 = , = , , = 90, 四边形是矩形 (2) = 60, = 8, = 90, = 30, 中, =12 = 4, = 43, = , , = 2 = 8, 的面积为 = 8 43 = 323 【解析】(1)由平行四边形的性

21、质得出/, = ,由已知条件得出/, = ,证出四边形是平行四边形,由等腰三角形的性质得出 = 90,即可得出四边形是矩形; (2)根据 = 60, = 8,即可得到和的长,再根据等腰三角形的性质即可得到的长,进而得出的面积 本题考查了矩形的判定、平行四边形的判定与性质、等腰三角形的性质;熟练掌握平行四边形的性质,由 等腰三角形的性质得出 是解决问题的关键 22.【答案】解:(1)设种品牌足球的单价为元,种品牌足球的单价为元, 依题意得: 50 + 25 = 4500 = + 30, 解得: = 50 = 80 答:购买一个种品牌的足球需要50元,购买一个种品牌的足球需要80元 (2)设第二次

22、购买种足球个,则购买种足球(50 )个, 依题意得:(50 + 4) + 80 0.9(50 ) 4500 70%50 23, 解得:25 27 故这次学校购买足球有三种方案: 方案一:购买种足球25个,种足球25个; 方案二:购买种足球26个,种足球24个; 方案三:购买种足球27个,种足球23个 【解析】 (1)设种品牌足球的单价为元, 种品牌足球的单价为元, 根据“总费用=买种足球费用+买种足球费用,以及种足球单价比种足球贵30元”可得出关于、的二元一次方程组,解方程组即可得出结论; (2)设第二次购买种足球个,则购买种足球(50 )个,根据“总费用=买种足球费用+买种足球费用,以及种足

23、球不小于23个”可得出关于的一元一次不等式组,解不等式组可得出的取值范围,由此即可得出结论 本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)根据数量关系找出关于、 的二元一次方程组; (2)根据数量关系找出关于的一元一次不等式组 本题属于中档题, 难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式或不等式组)是关键 23.【答案】解:(1)如图, 是 的直径, = = 90 (2)如图 与 相切, = 90 = 90 = = 2 第 16 页,共 19 页 = 2 = = , , = = 90 = , = , (3)连接,如图2所示 = , = ,

24、= 是 的直径, = 90 = , , = = 60, = 2, = 90, tan = = 60 = 3, = 23, = = 23 = 60, = 90, = 30 = 90, = 30, = 2 = , = , = = 设 的半径为,则 = = 2, = = 90, = 3. = = 2 3 = (2 3) = 23 = 43 + 6 的半径长为43 + 6 【解析】(1)由为 的直径即可得结论; (2)易证 = ,再结合条件 = 2就可证到 = ,易证 = ,从而证到 ; (3)由 = 60, = 2可求出 = 23;连接,容易证到 = ,根据角平分线的性质可得 = = 23;设圆的半

25、径为,易证 = , = 30,从而得到 = 2, = 3,由 = = 23列出方程,可求出 的半径长; 本题考查了切线的性质、圆周角定理、相似三角形的判定、角平分线的性质、30角所对的直角边等于斜边的一半、勾股定理等知识,有一定的综合性连接,证到 = 是解决第(3)题的关键 24.【答案】解:(1) = ( 3)3( 0; 由图可知,最小值为 =12 + 与抛物线 = 2 4 + 3的交点, 2 4 + 3 = 1, 解得1= 2 2,2= 2 + 2(舍去), 12 (2 2) + = 1, 解得 =22 第 18 页,共 19 页 【解析】(1)根据规定,分 3和 3两种情况求解; (2)

26、画出函数 = + 1和 =2的图象得到交点坐标为(1,2),然后根据规定写出不等式的解集即可; 画出函数 = | 1|, = 2 4 + 3的图象,可知最小值为 =12 + 与抛物线的交点,令 = 1根据抛物线解析式求出的值,再代入直线解析式求出的值即可 本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,以及作函数图象,读懂题目信息,理解 = *1,2,3,+的意义是解题的关键 25.【答案】(1)证明:由折叠的性质可得: = = 90, 四边形是矩形, = 90 = , = , ; (2)证明:四边形是矩形, = = 90, 由折叠的性质可得: = , = , (), = , +

27、= 90, + = 90, = 90, 是等腰直角三角形; (3)解: 是 的切线, = 90, + = 90, + = 90, = , 由折叠的性质得:垂直平分, = , = = 90, (), = = 4, 设 = ,则 = 4 , = = 4 , 连接并延长交于,如图2所示: 是 的切线, = 90, 为矩形, /, , : = : = 1:2, =12(4 ), =12 = 4 =12(4 + ), 2= 2 2, (4 + )2 (4 )2= 16, 解得: = 1,即 = 1, = 3, = 2+ 2= 32+ 42= 5,即 的直径为5 【解析】(1)根据折叠的性质及相似三角形的

28、判定可得结论; (2)由矩形的性质得出 = = 90,由折叠的性质得出 = ,由证明 ,再由全等三角形的性质可得结论; (3)连接并延长交于,根据折叠的性质知:垂直平分,可得: = ,为 的切线,可得: = + = 90, 又 + = 90, 可得: = , = = 90, 可证: , = , = ,由为 的切线,可得: ,故:/, ,设的长为,则 = , =12, = 可求出 的半径,在 中,运用勾股定理可将的长求出,即可得出的长,然后根据勾股定理可得答案 此题考查的是折叠的性质,相似三角形的判定与性质、圆的有关性质、勾股定理、矩形的性质、全等三角形的判定与性质,正确作出辅助线是解决此题的关键