1、第9讲 回归分析与独立性检验高考预测一:回归分析1如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型根据2000年至2016年的数据(时间变量的值依次为1,2,建立模型:;根据2010年至2016年的数据(时间变量的值依次为1,2,建立模型(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由2某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:和年利润(单位:千元)的影响,对近8年的
2、年宣传费和年销售量,2,数据作了初步处理,得到如图的散点图及一些统计量的值附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,(1)根据散点图判断和哪一个适宜作为销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立关于的回归方程;(3)已知这种产品的年利润与、的关系为,根据(2)的结果回答下列问题:年宣传费时,年销售量及年利润的预报值是多少?年宣传费为何值时,年利润的预报值最大?3长沙某公司对其主推产品在过去5个月的月广告投入(百万元)和相应的销售额(百万元)进行了统计,其中,2,3,4,5,对所得数据进行整理,绘制散点图并计算出
3、一些统计量如下:(1)根据散点图判断,与哪一个适宜作为月销售额关于月广告投入的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及题中所给数据,建立关于的回归方程,并据此估计月广告投入200万元时的月销售额附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,4在党的十九大报告中,习近平总书记提出“绿水青山就是金山银山”;为响应总书记的号召,某市旅游局计划共投入4千万元,对全市各旅区的环境进行综合治理,并且对各放游量区收益的增加值作了初步的估计,根据旅游局的治理规划方案,针对各旅游景区在治理后收益的增加值,工作人员绘了下面的频率分布直方图(如图所示),由于操作失误
4、,横轴的数据丢失,但可以确定横轴是从0开始计数的()频率分布直方图中各小长方形的宽度相等,求这个宽度;()旅游局在投入4千万元的治理经费下,估计全市旅游景区收量增加值的平均数为多少万元(以各组的区间中点值代表该组的取值)()若旅游局投入的不同数额的经费,按照以上的研究方法,得到以下数据:投入治理经费(单位:千万元)收益的增加值(单位:万元)请将()的答案填入上表的空白栏,结果显示与之间存在线性相关关系在优化环境的同时,旅游局还计划使全市旅游景区收益的总额至少增加10万元,试估计旅游局应该对全市旅游景区至少投入多少千万元的治理经费?(答案精确到附注:回归直线方程中的斜率和截距的最小二乘法估计公式分别为:高考预测二:独立性检验5为了比较两种治疗失眠症的药(分别称为药,药)的疗效,某机构随机地选取20位患者服用药,20位患者服用药,观察这40位患者的睡眠改善情况这些患者服用一段时间后,根据患者的日平均增加睡眠时间(单位:,以整数部分当茎,小数部分当叶,绘制了如图茎叶图:(1)根据茎叶图判断哪种药对增加睡眠时间更有效?并说明理由;(2)求这40名患者日平均增加睡眠时间的中位数,并将日平均增加睡眠时间超过和不超过的患者人数填入如表的列联表: