ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:941.04KB ,
资源ID:210167      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-210167.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届安徽省安庆市高考二模数学试题(理)含答案)为本站会员(花***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2022届安徽省安庆市高考二模数学试题(理)含答案

1、2022年安庆市高三模拟考试(二模)数学试题(理)1、 选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则A. B. C. D. 2.复数满足(为虚数单位),则实数A. B. C. D.3.命题:,则为A., B., C. , D.,4.抛物线的焦点为,点在抛物线上若,则直线的斜率为A. B. C. D. 5.已知,则A. B. C. D.或6.圆锥被过顶点的一个截面截取部分后所剩几何体的三视图如图所示,则截取部分几何体的体积为A. B.C. D.7.我国唐代著名的数学家僧一行在著作大衍历中给出了近似计算的“不等间距二次插值算法”

2、,用数学语言可表述为:若,则在闭区间上函数可近似表示为:,其中,.已知函数,分别取,则用该算法得到A. B. C. D. 8.已知函数,()的最小正周期为,将其图象沿轴向右平移()个单位,所得图象关于直线对称,则实数的最小值为A B C D9.已知,分别是双曲线(,)的右顶点和左焦点,是坐标原点. 点在第一象限且在的渐近线上,满足.若平分,则双曲线的离心率为A. B. C. D. 10.已知等比数列,公比为,其中,均为正整数,且,成等差数列,则等于A.96 B.48 C.16 D.811.棱长为的正方体中, ,分别是棱,的中点,下列命题中错误的是A. B. /平面 C. 平面 D. 四面体的体

3、积等于 12.若存在两个正实数x,y使得等式成立,则实数a的取值范围是A.B.C.D.第卷二、填空题:本题共4小题,每小题5分,共20分.13.已知平面向量,为单位向量,若,垂直,则,的夹角为 .14.立德中学开展学生数学素养测评活动,高一年级测评分值(满分100分)近似服从正态分布,正态曲线如图所示.为了调查参加测评的学生数学学习的方法与习惯差异,决定在分数段内抽取学生,并确定,且.在某班随机抽样得到20名学生的分值分布茎叶图如图所示.若该班抽取学生分数在分数段内的人数为,则等于 ;这名学生的人均分为 .(第1空2分,第2空3分)(附:,)第16题图 15.已知定义在区间上的函数,满足,当时

4、,.则满足不等式的实数的范围为 .16.如图,在中,点在边上,垂直于,则的面积为 .三、解答题:共70分. 解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答. 第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知数列的前项和为,且满足,.(I)求的通项公式;()若,求的前项和.18.(本小题满分12分)如图,四边形是梯形,/,是等腰三角形,且平面平面.(I)求证:;()如果直线与平面所成角的大小为45,求平面与平面所成锐二面角的余弦值. 19.(本小题满分12分)2022年2月4日,第24届北京冬奥会在国家体育馆隆

5、重开幕,本届冬奥会吸引了全球91个国家和地区的2892名冰雪健儿前来参赛.各国冰雪运动健儿在“一起向未来”的愿景中,共同诠释“更快、更高、更强、更团结”的奥林匹克新格言,创造了一项又一项优异成绩,中国队9金4银2铜收官,位列金牌榜第三,金牌数和奖牌数均创历史新高.中国健儿在赛场上努力拼搏,激发了全国人民参与冰雪运动的热情,憨态可掬的外貌加上富有超能量的冰晶外壳的吉祥物“冰墩墩”备受大家喜爱.某商场举行“玩摸球游戏,领奥运礼品”的促销活动,活动规定:顾客在该商场一次性消费满300元以上即可参加摸球游戏.摸球游戏规则如下:在一个不透明的袋子中装有10个大小相同、四种不同颜色的的小球,其中白色、红色

6、、蓝色、绿色小球分别有1个、2个、3个、4个,每个小球上都标有数字代表其分值,白色小球上标30、红色小球上标20、蓝色小球上标10、绿色小球上标5.摸球时一次只能摸一个,摸后不放回.若第一次摸到蓝色或绿色小球,游戏结束,不能领取奥运礼品;若第1次摸到白色小球或红色小球,可再摸2次.若摸到球的总分不低于袋子中剩下球的总分,则可免费领取奥运礼品.(I)求参加摸球游戏的顾客甲能免费领取奥运礼品的概率;()已知顾客乙在第一次摸球中摸到红色小球,设其摸球所得总分为,求的分布列与数学期望.20.(本小题满分12分)已知曲线,其离心率为,焦点在轴上.(I)求的值;()若与轴交于两点(点位于点的上方),直线与

7、交于不同的两点,直线与直线交于点.求证:当时,三点共线21.(本小题满分12分)已知函数,.(I)求函数的最值;()当时,证明:函数有两个零点.(二)选考题:共10分.请考生从第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44:坐标系与参数方程 (本小题满分10分)已知直线(其中常数,为参数),以原点为极点,以轴非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为.已知直线与曲线相切于点. (I)求的值;()若点为曲线上一点,求的面积取最大值时点的坐标.23. 选修4-5:不等式选讲(本小题满分10分)已知函数.(I)求不等式的解集;()设函数的最小值为

8、,正实数满足,求证:.参考答案1、 选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.题号123456789101112答案CCDBAADBABCD1.C.【解析】,.选C.2.C.【解析】设,则,有,由复数相等得到.选C.3.D.【解析】“”的否定为“”,故选D.4.B.【解析】设点,则,故,故点坐标为或,所以直线的斜率为.选B.另解:设直线的倾斜角为,点,在抛物线准线 上的射影分别为,.则,又,所以,得,所以选B.5.A.【解析】由已知,平方得,由于,解得或(舍),所以,故.选A.6.A.【解析】解:如图,圆锥底面半径为2,高为3,截取的几

9、何体的体积.选A.7.D.【解析】根据条件可知,所以,所以.故选D.8.B.【解析】,由其最小正周期为,有,所以,将其图象沿轴向右平移()个单位,所得图象对应函数为,其图象关于对称,则有,由,实数的最小值为.选B.9.A.【解析】由已知,而,故,由可得,整理可得.另解:根据题意可得点的坐标为,点的坐标为,其中,所以直线的方程为,即,所以坐标原点到直线的距离等于. 因为,所以点到直线的距离等于, 由平分,得,变形为.因为离心率,又,所以,解得. 故选A.10.B.【解析】由,有,即,由于,均为正整数,故(不合题意,舍去)或,得.所以.选B.11.C.【解析】,A正确;如图,取的中点,连接,易知四

10、边形是平行四边形,所以/,所以/平面,B正确;若平面,则,可得,不成立,C不正确;计算可知D正确.选C.12.D.解析:因为x,y均为正数,所以等式可化为,即,即.令,则,令,解得,当时,在上单调递增,当时,在上单调递减,所以,且当时,所以,故选D.第卷二、填空题:本题共4小题,每小题5分,共20分.13.【解析】由于,故,故,所以,的夹角为.14.【解析】随机变量,由,可得.故该班在内抽取了10人,人均分为分.15.【解析】设,则,故为偶函数,由,有,故,由于函数在上为减函数,故,解得.16.【解析】在中,因为,设,则在中,由余弦定理得,在中,因为,故,所以,解得.所以, 则的面积.三、解答

11、题:共70分. 解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答. 第22,23题为选考题,考生根据要求作答.17.(本小题满分12分)【解析】(I)时,解得. 1分时,故,所以, 3分故.符合上式故的通项公式为,. 6分(),. 12分18.(本小题满分12分)【解析】(I)如图,取的中点,连接. 因为,/,所以四边形是矩形,所以.在中,所以. 连接,则是等边三角形. 取的中点,连接,则. 连接,因为,所以,因为,所以平面,所以. 6分()因为平面平面,所以平面. 连接,则就是直线与平面所成的角,所以,所以.在中,所以,所以. 8分如图,以为坐标原点,、分

12、别为轴、轴和轴的正方向,建立空间直角坐标系,令,则, . 由,可得.所以,. 设平面的一个法向量为,由,得.可取,则.因为平面的一个法向量为,所以,所以平面与平面所成锐二面角的余弦值为. 12分19.(本小题满分12分)【解析】(I)因所有小球的总分为120分,若甲第1次摸到白球,再摸两个球的颜色若都是红色,或者一红一蓝即可领取奥运礼品,其概率为; 2分若甲第1次摸到红球,再摸2个球的颜色若是一白一红,一白一蓝即可领取奥运礼品,其概率为; 所以顾客甲能免费领取奥运礼品的概率为. 5分()由条件可知, 6分,,, 9分于是的分布列为:7060555045403530其数学期望为.12分20.(本

13、小题满分12分)【解析】(I)由于是焦点在轴上的椭圆,则其方程可化为,所以必须满足:,解得.因的离心率为,则,解得. 5分()由(I)可知的方程为,所以,.把代入,整理得.设,则,. 7分因为点,所以直线的方程为:.令,得,所以.因为点,所以直线的斜率为,直线的斜率为.所以.,当时,上式等于0,即,这说明,三点共线12分21.(本小题满分12分)【解析】(I), 1分由于,所以,设,则,故函数在区间上单调递减,由于,故存在,使. 3分故当,则,当时,则,从而存在,的单增区间为,单减区间为.函数的最大值为, 4分由于,所以,故.所以函数的最大值为,没有最小值. 6分()设1),则,当时,故在上单

14、调递增,故,即.当时,由(I)知,由于,由(I)知,且,故,即,所以,9分且,而,故函数有两个零点. 12分(说明:若采用极限证明,扣3分.)22. 选修44:坐标系与参数方程 (本小题满分10分)【解析】()由已知可得直线的普通方程为,曲线的直角坐标方程为,根据点到直线的距离公式可知,解得或,又,所以. 5分()由()可知直线的方程为,而且弦的长度一定,要使的面积最大,只需点到直线的距离最大,设,则点到直线的距离为,所以当即时,距离最大,此时点的坐标为. 10分23. 选修45:不等式选讲(本小题满分10分)【解析】()由条件可知原不等式可化为,解得;解得;解得,所以原不等式的解集为. 5分()因, 所以当时,函数的最小值为,于是,由于,而,于是.因为所以,原不等式得证. 10分