ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:491.69KB ,
资源ID:208999      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-208999.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广东省韶关市南雄市2021-2022学年中考第一次质检数学试卷(含答案解析))为本站会员(花***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

广东省韶关市南雄市2021-2022学年中考第一次质检数学试卷(含答案解析)

1、1下列交通标志中,既是轴对称图形又是中心对称图形的是( ) A B C D 2下列事件中,是必然事件的是( ) A购买一张彩票,中奖 B射击运动员射击一次,命中靶心 C经过有交通信号灯的路口,遇到红灯 D任意画一个三角形,其内角和是 180 3反比例函数 y的图象在( ) A第一、三象限 B第二、四象限 C第一、二象限 D第三、四象限 4把抛物线 y2x2向上平移 1 个单位,再向右平移 1 个单位,得到的抛物线是( ) Ay2(x+1)2+1 By2(x1)2+1 Cy2(x1)21 Dy2(x+1)21 5方程 x22x10 的根的情况是( ) A有两个不等实数根 B有两个相等实数根 C无

2、实数根 D无法判定 6抛物线 y(x1)22 的顶点坐标为( ) A(1,2) B(1,2) C(1,2) D(1,2) 7有一个正 n 边形的中心角是 36,则 n 为( ) A7 B8 C9 D10 8如图,AB 是O 的弦,OCAB,交O 于点 C,连接 OA,OB,BC,若ABC20,则AOB 的度数是( ) A40 B50 C70 D80 9设 x1、x2是方程 x2+3x30 的两个实数根,则的值为( )  A5 B5 C1 D1 10抛物线 yax2+bx+c 的对称轴为直线 x1,部分图象如图所示,下列判断中: abc0;b24ac0;9a3b+c0;8a2b+c0;

3、若点(0.5,y1),(2,y2)均在抛物线上,则 y1y2,其中正确的有( ) A B C D 二、填空题:(每小题二、填空题:(每小题 4 分,共分,共 7 题,共题,共 28 分)分) 11若 x1 是方程 x24x+m0 的根,则 m 的值为 12某射击运动员在同一条件下的射击成绩记录如下: 射击次数 50 100 200 400 800 1000 “射中 9 环以上”的次数 38 82 157 317 640 801 “射中 9 环以上”的频率 0.760 0.820 0.785 0.793 0.800 0.801 根据频率的稳定性,估计这名运动员射击一次时“射中 9 环以上”的概率

4、是 (结果保留小数点后一位) 13扇形的弧长为 10cm,面积为 120cm2,则扇形的半径为 cm 14如图,ABC 以点 O 为旋转中心,旋转后得到ABC,E、D 分别是 AB、AC 的中点,经旋转后对应点分别为 E、D,已知 BC4,则 ED等于 15如图,ABC 内接于O,A72,则OBC 16如果点 A(3,2m+1)关于原点对称的点在第一象限,则 m 的取值范围是  17如图,点 A 是反比例函数图象上的一点,过点 A 作 ACx 轴,垂足为点 C,D 为 AC 的中点,若AOD 的面积为 1,则 k 的值为 三、解答题(每题三、解答题(每题 6 分,共分,共 3 题,共

5、题,共 18 分)分) 18解下列方程: (1)x2x2(x1); (2)x2+6x10 19在如图所示的直角坐标系中,解答下列问题: (1)分别写出 A、B 两点的坐标; (2)将ABC 绕点 A 顺时针旋转 90,画出旋转后的AB1C1 20如图,PA,PB 是O 的切线,A,B 为切点,AC 是O 的直径,P50,求BAC 的度数 四、解答题(二)(本题共四、解答题(二)(本题共 3 小题,每小题小题,每小题 8 分,共分,共 24 分)分) 21一个盒中有 4 个完全相同的小球,把它们分别标号为 1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球  ()请用列表法(

6、或画树状图法)列出所有可能的结果; ()求两次取出的小球标号相同的概率; ()求两次取出的小球标号的和大于 6 的概率 22 某水果批发商经销一种水果, 进货价是 12 元/千克, 如果销售价定为 22 元/千克, 每日可售出 500 千克;经市场调查发现,在进货价不变的情况下,若每千克涨价 1 元,日销售量将减少 20 千克 (1)若要每天销售盈利恰好为 6000 元,同时又可使顾客得到实惠,每千克应涨价多少元? (2)当销售价是多少时,每天的盈利最多?最多是多少? 23如图,一次函数 yx+4 的图象与反比例函数 y(k 为常数且 k0)的图象交于 A(1,a),B 两点,与 x 轴交于点

7、 C (1)求此反比例函数的表达式; (2)若点 P 在 x 轴上,且 SACPSBOC,求点 P 的坐标 五、解答题(三)(本题共五、解答题(三)(本题共 2 小题,每小题小题,每小题 10 分,共分,共 20 分)分) 24如图,已知 AB 是O 的直径,点 C 在O 上,点 P 是 AB 延长线上一点,BCPA (1)求证:直线 PC 是O 的切线; (2)若 CACP,O 的半径为 2,求 CP 的长 25如图,二次函数 yax2+bx+c 的图象与 x 轴相交于点 A(1,0)、B(3,0)两点,与 y 轴相交于点 C(0,3) (1)求此二次函数的解析式; (2)若抛物线的顶点为

8、D,点 E 在抛物线上,且与点 C 关于抛物线的对称轴对称,直线 AE 交对称轴于点 F,试判断四边形 CDEF 的形状,并证明你的结论  参考答案参考答案 一、选择题(本大题一、选择题(本大题 10 小题,每小题小题,每小题 3 分,共分,共 30 分)每小题给出四个选项中只有一个是正确的,请把答分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑题卡上对应题目所选的选项涂黑.) 1下列交通标志中,既是轴对称图形又是中心对称图形的是( ) A B C D 【分析】根据轴对称图形与中心对称图形的概念求解 解:A、是轴对称图形,是中心对称图形故正确; B、是轴对

9、称图形,不是中心对称图形故错误; C、是轴对称图形,不是中心对称图形故错误; D、不是轴对称图形,不是中心对称图形故错误 故选:A 2下列事件中,是必然事件的是( ) A购买一张彩票,中奖 B射击运动员射击一次,命中靶心 C经过有交通信号灯的路口,遇到红灯 D任意画一个三角形,其内角和是 180 【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的 解:A购买一张彩票中奖,属于随机事件,不合题意; B射击运动员射击一次,命中靶心,属于随机事件,不合题意;  C经过有交通信号灯的路口,遇到红灯,属于随机事件,不合

10、题意; D任意画一个三角形,其内角和是 180,属于必然事件,符合题意; 故选:D 3反比例函数 y的图象在( ) A第一、三象限 B第二、四象限 C第一、二象限 D第三、四象限 【分析】根据反比例函数的性质即可得到结论 解:反比例函数 y的图象在第一、三象限, 故选:A 4把抛物线 y2x2向上平移 1 个单位,再向右平移 1 个单位,得到的抛物线是( ) Ay2(x+1)2+1 By2(x1)2+1 Cy2(x1)21 Dy2(x+1)21 【分析】易得原抛物线的顶点及平移后新抛物线的顶点,根据平移不改变二次项系数利用顶点式可得抛物线解析式 解:函数 y2x2的顶点为(0,0), 向上平移

11、 1 个单位,再向右平移 1 个单位的顶点为(1,1), 将函数 y2x2的图象向上平移 1 个单位,再向右平移 1 个单位,得到抛物线的解析式为 y2(x1)2+1, 故选:B 5方程 x22x10 的根的情况是( ) A有两个不等实数根 B有两个相等实数根 C无实数根 D无法判定 【分析】把 a1,b2,c1 代入b24ac 进行计算,然后根据计算结果判断方程根的情况 解:a1,b2,c1, b24ac(2)241(1)80, 所以方程有两个不相等的实数根 故选:A 6抛物线 y(x1)22 的顶点坐标为( ) A(1,2) B(1,2) C(1,2) D(1,2) 【分析】根据抛物线的顶

12、点式解析式写出顶点坐标即可 解:y(x1)22 为(1,2) 故选:C 7有一个正 n 边形的中心角是 36,则 n 为( )  A7 B8 C9 D10 【分析】根据正多边形的中心角和为 360计算即可 解:n10, 故选:D 8如图,AB 是O 的弦,OCAB,交O 于点 C,连接 OA,OB,BC,若ABC20,则AOB 的度数是( ) A40 B50 C70 D80 【分析】根据圆周角定理得出AOC40,进而利用垂径定理得出AOB80即可 解:ABC20, AOC40, AB 是O 的弦,OCAB, AOCBOC40, AOB80, 故选:D 9设 x1、x2是方程 x2+3

13、x30 的两个实数根,则的值为( ) A5 B5 C1 D1 【分析】先利用根与系数的关系求出两根之和与两根之积,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将两根之和与两根之积代入计算即可求出值 解:x1、x2是方程 x2+3x30 的两个实数根, x1+x23,x1x23, 则原式5 故选:B 10抛物线 yax2+bx+c 的对称轴为直线 x1,部分图象如图所示,下列判断中: abc0;b24ac0;9a3b+c0;8a2b+c0;若点(0.5,y1),(2,y2)均在抛物线上,则 y1y2,其中正确的有( )  A B C D 【分析】利用图象开口方向

14、,对称轴位置和与 y 轴交点判断,由抛物线与 x 轴的交点个数可判断,取 x3,得出 y 的范围可判断,根据0.5 和2 到对称轴的距离可判断 解:图象开口向上, a0, 对称轴为直线 x1, 1, b2a0, 图象与 y 轴交点在 y 轴负半轴, c0, abc0,错误 由图象可知抛物线与 x 轴有两个交点, b24ac0,正确, 由图象可知,抛物线与 x 轴的另一个交点为(3,0), 当 x3 时,y0, 9a3b+c0,正确, |2(1)|1,|0.5(1)|0.5, 10.5, 当 x2 时的函数值大于 x0.5 时的函数值, y1y2,错误, 正确的有, 故选:D 二、填空题:(每小

15、题二、填空题:(每小题 4 分,共分,共 7 题,共题,共 28 分)分) 11若 x1 是方程 x24x+m0 的根,则 m 的值为 3 【分析】根据一元二次方程的解,把 x1 代入方程 x24x+m0 得到关于 m 的一次方程,然后解此一次方程即可  解:把 x1 代入 x24x+m0 得 14+m0, 解得 m3 故答案为:3 12某射击运动员在同一条件下的射击成绩记录如下: 射击次数 50 100 200 400 800 1000 “射中 9 环以上”的次数 38 82 157 317 640 801 “射中 9 环以上”的频率 0.760 0.820 0.785 0.793

16、 0.800 0.801 根据频率的稳定性,估计这名运动员射击一次时“射中 9 环以上”的概率是 0.8 (结果保留小数点后一位) 【分析】根据大量的实验结果稳定在 0.8 左右即可得出结论 解:从频率的波动情况可以发现频率稳定在 0.8 附近, 这名运动员射击一次时“射中 9 环以上”的概率是 0.8 故答案为:0.8 13扇形的弧长为 10cm,面积为 120cm2,则扇形的半径为 24 cm 【分析】根据扇形面积公式和扇形的弧长公式之间的关系:S扇形lr,把对应的数值代入即可求得半径r 的长 解:S扇形lr 12010r r24; 故答案为 24 14如图,ABC 以点 O 为旋转中心,

17、旋转后得到ABC,E、D 分别是 AB、AC 的中点,经旋转后对应点分别为 E、D,已知 BC4,则 ED等于 2 【分析】由三角形中位线定理可得 DE2,由旋转的性质可求解 解:E、D 分别是 AB、AC 的中点, DEBC2, 由旋转的性质可得:DEDE2, 故答案为:2  15如图,ABC 内接于O,A72,则OBC 18 【分析】 连接 OC, 一条弧所对的圆周角等于它所对的圆心角的一半和三角形内角和定理即可求出结果 解:如图,连接 OC, A72, BOC2A144, OBOC, OBCOCB(180144)18 故答案为:18 16如果点 A(3,2m+1)关于原点对称的

18、点在第一象限,则 m 的取值范围是 m 【分析】根据关于原点对称的点的横坐标与纵坐标互为相反数判断出 2m+10,然后解不等式即可 解:点 A(3,2m+1)关于原点的对称点在第一象限, 点 A(3,2m+1)在第三象限, 2m+10, 解得 m 故答案为:m 17如图,点 A 是反比例函数图象上的一点,过点 A 作 ACx 轴,垂足为点 C,D 为 AC 的中点,若AOD 的面积为 1,则 k 的值为 4 【分析】根据题意可知AOC 的面积为 2,然后根据反比例函数系数 k 的几何意义即可求得 k 的值  解:ACx 轴,垂足为点 C,D 为 AC 的中点,若AOD 的面积为 1,

19、 AOC 的面积为 2, SAOC|k|2,且反比例函数 y图象在第一象限, k4, 故答案为:4 三、解答题(每题三、解答题(每题 6 分,共分,共 3 题,共题,共 18 分)分) 18解下列方程: (1)x2x2(x1); (2)x2+6x10 【分析】(1)先变形得到 x(x1)2(x1)0,然后利用因式分解法解方程; (2)利用配方法得到(x+3)210,然后给利用直接开平方法解方程 解:(1)x2x2(x1), x(x1)2(x1)0, (x1)(x2)0, x10 或 x20, 所以 x11,x22; (2)x2+6x10, x2+6x1, x2+6x+910, (x+3)210

20、, x+3, 所以 x13+,x23 19在如图所示的直角坐标系中,解答下列问题: (1)分别写出 A、B 两点的坐标; (2)将ABC 绕点 A 顺时针旋转 90,画出旋转后的AB1C1  【分析】(1)直接根据点 A、B 在坐标系中的位置写出其坐标即可; (2)根据图形旋转的性质画出旋转后的AB1C1即可; 解:(1)由点 A、B 在坐标系中的位置可知:A(2,0),B(1,4); (2)如图所示: 20如图,PA,PB 是O 的切线,A,B 为切点,AC 是O 的直径,P50,求BAC 的度数 【分析】由 PA,PB 分别为圆 O 的切线,根据切线长定理得到 PAPB,再利用等

21、边对等角得到一对角相等,由顶角P 的度数,求出底角PAB 的度数,又 AC 为圆 O 的直径,根据切线的性质得到 PA 与AC 垂直,可得出PAC 为直角,用PACPAB 即可求出BAC 的度数 解:PA,PB 分别切O 于 A,B 点,AC 是O 的直径, PAC90,PAPB, 又P50, PABPBA65, BACPACPAB906525 四、解答题(二)(本题共四、解答题(二)(本题共 3 小题,每小题小题,每小题 8 分,共分,共 24 分)分) 21一个盒中有 4 个完全相同的小球,把它们分别标号为 1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球 ()请用列表法(或画

22、树状图法)列出所有可能的结果;  ()求两次取出的小球标号相同的概率; ()求两次取出的小球标号的和大于 6 的概率 【分析】()根据题意可画出树状图,由树状图即可求得所有可能的结果 ()根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案 ()根据树状图,即可求得两次取出的小球标号的和大于 6 的情况,然后利用概率公式求解即可求得答案 解:()画树状图得: ()共有 16 种等可能的结果,两次取出的小球的标号相同的有 4 种情况, 两次取出的小球标号相同的概率为; ()共有 16 种等可能的结果,两次取出的小球标号的和大于 6 的有 3 种结果, 两次

23、取出的小球标号的和大于 6 的概率为 22 某水果批发商经销一种水果, 进货价是 12 元/千克, 如果销售价定为 22 元/千克, 每日可售出 500 千克;经市场调查发现,在进货价不变的情况下,若每千克涨价 1 元,日销售量将减少 20 千克 (1)若要每天销售盈利恰好为 6000 元,同时又可使顾客得到实惠,每千克应涨价多少元? (2)当销售价是多少时,每天的盈利最多?最多是多少? 【分析】(1)设每千克应涨价为 x 元,根据(售价进价+涨价额)销售量6000,可得关于 x 的一元二次方程,求得方程的解并根据要使顾客得到实惠,可得答案; (2)设销售价为 a 元时,每天的盈利为 w,由题

24、意得 w 关于 a 的二次函数,将其写成顶点式,根据二次函数的性质可得答案 解:(1)设每千克应涨价为 x 元,由题意得: (2212+x)(50020 x)6000, 整理得:x215x+500, 解得:x15,x210 要使顾客得到实惠, x5 每千克应涨价 5 元 (2)设销售价为 a 元时,每天的盈利为 w,由题意得:  w(a12)50020(a22) 20a2+1180a11280 20+6125, 二次项系数为负,抛物线开口向下, 当 a时,w 有最大值为 6125 当销售价是时,每天的盈利最多,最多是 6125 元 23如图,一次函数 yx+4 的图象与反比例函数 y

25、(k 为常数且 k0)的图象交于 A(1,a),B 两点,与 x 轴交于点 C (1)求此反比例函数的表达式; (2)若点 P 在 x 轴上,且 SACPSBOC,求点 P 的坐标 【分析】(1)利用点 A 在 yx+4 上求 a,进而代入反比例函数 y求 k (2)联立方程求出交点,设出点 P 坐标表示三角形面积,求出 P 点坐标 解:(1)把点 A(1,a)代入 yx+4,得 a3, A(1,3) 把 A(1,3)代入反比例函数 y k3, 反比例函数的表达式为 y (2)联立两个函数的表达式得 解得 或  点 B 的坐标为 B(3,1) 当 yx+40 时,得 x4 点 C(4

26、,0) 设点 P 的坐标为(x,0) SACPSBOC 解得 x16,x22 点 P(6,0)或(2,0) 五、解答题(三)(本题共五、解答题(三)(本题共 2 小题,每小题小题,每小题 10 分,共分,共 20 分)分) 24如图,已知 AB 是O 的直径,点 C 在O 上,点 P 是 AB 延长线上一点,BCPA (1)求证:直线 PC 是O 的切线; (2)若 CACP,O 的半径为 2,求 CP 的长 【分析】(1)欲证明 PC 是O 的切线,只要证明 OCPC 即可; (2)想办法证明P30即可解决问题 【解答】(1)证明: OAOC, AACO, PCBA, ACOPCB, AB

27、是O 的直径, ACO+OCB90, PCB+OCB90,即 OCCP, OC 是O 的半径, PC 是O 的切线; (2)解CPCA, PA, COB2A2P,  OCP90, P30, OCOA2, OP2OC4, PC2 25如图,二次函数 yax2+bx+c 的图象与 x 轴相交于点 A(1,0)、B(3,0)两点,与 y 轴相交于点 C(0,3) (1)求此二次函数的解析式; (2)若抛物线的顶点为 D,点 E 在抛物线上,且与点 C 关于抛物线的对称轴对称,直线 AE 交对称轴于点 F,试判断四边形 CDEF 的形状,并证明你的结论 【分析】(1)利用待定系数法即可解决问

28、题 (2)结论:四边形 EFCD 是正方形如图 1 中,连接 CE 与 DF 交于点 K求出 E、F、D、C 四点坐标,只要证明 DFCE,DFCE,KCKE,KFKD 即可证明 解:(1)把 A(1,0),B(3,0),C(0,3)代入 yax2+bx+c,得 , 解得, 抛物线的解析式为 yx22x3; (2)结论四边形 EFCD 是正方形 理由:如图,连接 CE 与 DF 交于点 K y(x1)24, 顶点 D(1,4),  C、E 关于对称轴对称,C(0,3), E(2,3), A(1,0),设直线 AE 的解析式为 ykx+b, , 解得, 直线 AE 的解析式为 yx1 F(1,2), CKEK1,FKDK1, 四边形 EFCD 是平行四边形, 又CEDF,CEDF, 四边形 EFCD 是正方形