ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:1.07MB ,
资源ID:207803      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-207803.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第11讲立体几何中球的综合问题 专题提升训练(解析版)-2022届高考数学理培优)为本站会员(狼****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

第11讲立体几何中球的综合问题 专题提升训练(解析版)-2022届高考数学理培优

1、第11讲 立体几何中球的综合问题A组一、选择题1.(2019年高考全国卷理)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,ABC是边长为2的正三角形,E,F分别是PA,AB的中点,CEF=90,则球O的体积为AB CD【答案】D【解析】:由及是边长为2的正三角形可知,三棱锥为正三棱锥,则顶点P在底面的射影O为底面三角形的中心.连接BO并延长,交AC于G,则,又,可得AC平面PBG,则PBAC.因为E,F分别是PA,AB的中点,所以.又,即EFCE,所以PBCE,得PB平面PAC.所以PBPA,PBPC.又因为,是正三角形,所以,故所以正三棱锥的三条侧棱两两互相垂直. 把三棱锥

2、补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为正方体的体对角线的长度,即, 半径为,则球O的体积为故选D2(2018年高考全国卷)已知圆柱的上、下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A B C D【答案】B【解析】过直线的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为,底面圆的直径为,所以该圆柱的表面积为故选B3三棱柱的各个顶点都在球的球面上,且平面。若球的表面积为,则这个三棱柱的体积是( )A B C D1【答案】C【解析】平面,三棱柱内接球,为距形的中心, 设球半径为,则,即,三棱柱的高,三棱柱的体积,故选C。4球

3、的球面上有四点,其中四点共面,是边长为2的正三角形,面面,则棱锥的体积的最大值为( )A B C D4【答案】A【解析】设球心和的外心为,延长交于点,则由球的对称性可知,继而由面面可得所在的平面,所以是三棱锥的高;再由四点共面可知是的中心,故,当三棱锥的体积最大时,其高为,故三棱锥的体积的最大值为,应选A。5如图所示,直四棱柱内接于半径为的半球,四边形为正方形,则该四棱柱的体积最大时,的长为( )A B C D【答案】D【解析】设,则,所以直四棱柱的体积为,令,则,则,故,所以当时,即时,体积最大.故应选D.6在正三棱锥中,是的中点,且,底面边长,则正三棱锥的外接球的表面积为( )A B C

4、D【答案】B【解析】根据三棱锥为正三棱锥,可证明出ACSB,结合SBAM,得到SB平面SAC,因此可得SA、SB、SC三条侧棱两两互相垂直最后利用公式求出外接圆的直径,结合球的表面积公式,可得正三棱锥S-ABC的外接球的表面积取AC中点,连接BN、SN,N为AC中点,SA=SC,ACSN,同理ACBN,SNBN=N,AC平面SBN,SB平面SBN,ACSB,SBAM且ACAM=A,SB平面SACSBSA且SBAC,三棱锥S-ABC是正三棱锥,SA、SB、SC三条侧棱两两互相垂直底面边长侧棱SA=2,正三棱锥S-ABC的外接球的直径为:,正三棱锥S-ABC的外接球的表面积是,故选:B二、填空题7

5、已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 【答案】【解析】设正方体边长为,则 ,外接球直径为.8底面是同一个边长为的正三角形的两个三棱锥内接于同一个球,它们顶点的连线为球的直径且垂直于底面,球的半径为。设两个三棱锥的侧面与底面所成的角分别为,则的值是 。【答案】.【解析】如下图所示,右图为左图的纵切面图.如图可知,底面为正三角形,D为BC的中点,则,故和即为二面角;设交平面ABC于点P,易知P点在AD上,且为的重心.,,.9已知三棱锥的所有棱长都相等,现沿三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为,则三棱锥的内切球的表面积为

6、 .【答案】【解析】三棱锥展开后为等边三角形,设边长,则,则因此三棱锥的棱长为,三棱锥的高,设内切球的半径为,则,求的表面积.10.已知球的表面上有四点,且两两互相垂直,若,求这个球的表面积和体积 解:设过的平面截球所得截面圆心为,与球面另一交点为.因为,所以是圆的直径,且.因为,所以平面,又平面,所以.如图,过作平面,则直线为平面和平面的交线,点,连接,在圆中,为直角,所以为圆的直径.设圆的半径为,在中,即,所以.所以三、解答题11.棱长为的正方体容器中盛满水,把半径为的铜球放入水中刚好被淹没,然后再放入一个铁球,使它淹没水中,要使流出的水量最多,这个铁球半径应该为多大? 解:过正方体对角线

7、的截面图如图所示,.设小球半径为,在中,解得为所求.12.过球面上一点的三条弦,满足,求此球的表面积 解:由题意知,四面体是球的内接正四面体.设是的中心,则球心在上.如图,连接,设球半径为,则,在中,而,故,表面积为13.将半径为R的四个球,两两相切地放在桌面上,求上面一个球的球心到桌面的距离。解:设四个球心分别为A,B,C,D,则四面体A-BCD是棱长为2R的正四面体,如图所示,过A作AH面BCD与H,则H为BCD的中心,连接BH并延长交CD于M,连接AM,则BMCD,AMCD且AM=R,HM=,所以AH=R,故上面一球的球心到桌面距离为。B组一、选择题1已知三棱锥,在底面中, 面,则此三棱

8、锥的外接球的表面积为( )A B C D【答案】D【解析】底面三角形内,根据正弦定理,可得,满足勾股定理,,底面,所以,那么平面,所以,那么直角三角形有公共斜边,所以三棱锥的外接球的球心就是的中点,是其外接球的直径,,所以外接球的表面积,故选D.2如图, 在菱形中, 为对角线的中点, 将沿折起到的位置,若 ,则三棱锥的外接球的表面积为( )A B C D【答案】A【解析】设分别是等边三角形的外心,则画出图象如下图所示,由图象可知,,故,,外接球面积为.3已知三棱锥SABC,满足SASB,SBSC,SCSA,且SA=SB=SC,若该三棱锥外接球的半径为,Q是外接球上一动点,则点Q到平面ABC的距

9、离的最大值为( )A3 B2 C D【答案】D【解析】因为三棱锥中,且,所以三棱锥的外接球即为以为长宽高的正方体的外接球,因为该三棱柱外接球的半径为,所以正方体的对角线长为,所以球心到平面的距离为,所以点到平面的距离的最大值为,故选D4已知从点出发的三条射线,两两成角,且分别与球相切于,三点若球的体积为,则,两点间的距离为( )(A) (B) (C)3 (D)【答案】B【解析】连接交平面于,由题意可得:和为正三角形,所以因为,所以,所以又因为球的体积为,所以半径,所以 二、填空题5已知三棱锥的所有顶点都在球的球面上,是球的直径若平面平面,三棱锥的体积为9,则球的表面积为_【答案】【解析】取的中

10、点,连接,因为,所以,因为平面平面,所以平面平面设,所以,所以球的表面积为6一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为,那么这个三棱柱的体积是_.【答案】【解析】由题意可得,球的半径为,则正三棱柱的高为,底面正三角形中心到各边的距离为,所以底面边长为,从而所求三棱柱的体积为.故正确答案为.7若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为 【答案】【解析】过圆锥的旋转轴作轴截面,得及其内切圆和外切圆,且两圆同圆心,即的内心与外心重合,易得为正三角形,由题意的半径为,的边长为,圆锥的底面半径为,高为,三、解答题8.已知棱长为3的正四面体A-BCD,E,F

11、分别是棱AB,AC上的点,且AF=2FC,BE=2AE,求四面体A-EFD的内切球的半径。解:如图所示,设四面体A-EFD的内切球半径为,球心为O,连接OA,OE,OF,OD,则,四面体A-EFD的各面面积为,各边边长分别为EF=,DF=DE=,,又,,所以,故四面体A-EFD的内切球半径为。9.已知四面体P-ABC,PA=4,AC=,PB=BC=,面PBC,求四面体P-ABC的内切球与外接球面积的比。解:由题意,已知面PBC,PA=4,AC=,PB=BC=,如图,由勾股定理得,,所以为等边三角形,为等腰三角形,等边三角形PBC所在小圆的直径,那么四面体P-ABC的外接球直径AD=2R=,所以

12、,,表面积.设内切球半径为,那么,所以,故四面体P-ABC的内切球半径与外接球半径的比,即表面积之比为。10.球与正四面体的六条棱都相切,则球与正四面体的体积比是多少?解:如图,设正四面体棱长为,球半径为R,取AB中点E,CD中点F,连接AF,BF,EF,则AF=BF=,,同理可得,是AB,CD的公垂线段,则EF的长是AB,CD的距离,又由球与正四面体的六条棱相切,得EF是该球的直径,即,又,故。11.已知正三棱锥P-ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,求正三棱锥P-ABC外接球球心到截面ABC的距离。解:把正三棱锥补成正方体,如图所示,可知外接球球心O为体

13、对角线PD的中点,且PO=,又P到平面ABC的距离为,,则,则球心O到截面ABC的距离为PO=。C组一、选择题1已知三点都在以为球心的球面上, 两两垂直,三棱锥的体积为,则球的表面积为( )A. B. C. D.【答案】B【解析】设球的半径为,由题意,可得三棱锥体积,解得,则球的表面积为,故选B.2三棱锥的四个顶点均在半径为2的球面上,且,平面平面,则三棱锥的体积的最大值为( )A4 B3 C D【答案】B【解析】根据题意:半径为的球面上,且,为截面为大圆上三角形,设圆形为,的中点为,,,三棱锥的体积的最大值时,三棱锥的体积的最大值为.3已知四面体的一条棱长为,其余棱长均为,且所有顶点都在表面

14、积为的球面上,则 的值等于( )A B C D【答案】A【解析】如图所示的四面体中,设,其余的棱长均为,取的中点,连接,则,又所有顶点都在表面积为的球面上,所以球的半径为,球心落在线段上,且,在直角中,则,即,解得,故选A 4在三棱锥中,ABC与BCD都是边长为6的正三角形,平面ABC平面BCD,则该三棱锥的外接球的体积为( )A. B. C. D.【答案】D【解析】取BC的中点为M,E、F分别是正三角形ABC和正三角形BCD的中心,O是该三棱锥外接球的球心,连接AM、DM、OF、OE、OM、OB,则E、F分别在AM、DM上,OF平面BCD,OE平面ABC,OMBC,AMBC,DMBC,所以A

15、MD为二面角ABCD的平面角,因为平面ABC平面BCD,所以AMDM,又AM=DM=,所以=,所以四边形OEMF为正方形,所以OM=,在直角三角形OMB中,球半径OB=,所以外接球的体积为= ,故选D.5一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为的铁球,这时水面恰好和球面相切问将球从圆锥内取出后,圆锥内水平面的高是( )A B C D【答案】B【解析】如图,作轴截面,设球未取出时,水面高,球取出后,水面高,则以为底面直径的圆锥容积为,球取出后,水面下降到,水的体积为又,则,解得,选B6已知三棱锥所有顶点都在球的球面上,且平面,若, ,则球的表面积为 .【答案】【解

16、析】,三角形的外接圆直径,平面为等腰三角形, 该三棱锥的外接球的半径,该三棱锥的外接球的表面积为.因此,本题正确答案是: 7三棱锥中,平面,则该三棱锥的外接球表面积为( )A B C D【答案】D【解析】由题意得,在中,因为,由余弦定理得,所以,所以外接圆的半径为,即,所以球的半径为,所以球的表面积为,故选D8半径为的球内部装有4个半径相同的小球,则小球半径的可能最大值为( )A B C D【答案】C【解析】四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大,以四个小球球心为顶点的正四面体棱长为,该正四面体的中心(外接球球心)就是大球的球心,该正四面体的高为,该正四面体的外接球半径

17、为,则,解得,故答案为C二、填空题9如图,三个半径都是10cm的小球放在一个半球面的碗中,小球的顶端恰好与碗的上沿处于同于水平面,则这个碗的半径R是_cm【答案】【解析】依题意可得碗的球心为O,半径为R.其它三个球的球心分别是.这四个点构成了一个正三棱锥,其中侧棱表示两个球内切的圆心距关系.底面长为两个外切求的圆心距.所以=R-10. .通过解直角三角形可得.故填.三、解答题10有三个球和一个正方体,第一个球与正方体各个面内切,第二个球与正方体各条棱相切,第三个球过正方体各顶点,求三个球表面积的比。解:设正方体棱长为,则内切球半径,棱切球其直径为正方体各面的对角线长,则;外接球直径为正方体的体

18、对角线,故,所以表面积之比为。11.如图所示,已知球O是棱长为1的正方体的内切球,求平面截球O的截面积。解:根据正方体的几何特征知,平面截球O的截面是边长为的正三角形,且球与以点D为公共点的三个面的切点恰为三角形三边的中点,故所求截面的面积是该正三角形的内切圆的面积,由图得的内切圆的半径为,故所求的截面圆的面积是。12. 已知AB是球O的直径,C,D是球面上的两点,且D在以BC为直径的小圆上,如图所示,设此小圆所在平面为,(1)求证:平面ACB平面;(2)设AB与所成角为,过球半径OD且垂直于的截面截BC弦于E点,求与经过点O,D的截面面积之比,并求为何值时,面积之比最大。(1)证明:连接球心

19、O与小圆圆心,由球的性质知,圆面O,连接AC,在中,显然有平行等于,因为圆面O,所以圆面O,又AC面ACB,所以面ACB圆面O,即面ACB平面。(2)因为面OED圆面O,面ACB圆面O,且面ACB面ODE=OE,故OE圆面O,因为OO圆面O,所以O,E两点重合,即E为小圆的圆心。在R中,设球半径为R,有OE=R,所以在中,DE,故的面积,又因为经过O,D的截面必为大圆,且它的面积为,所以,当时,它们面积之比最大且最大值为,此时,所以所求面积之比为,当时面积之比最大且最大值为。13.若三棱锥的三条侧棱两辆垂直,且侧棱长均为,则求其外接球的表面积。【解】将等边三角形当作底面,由知道为正三棱锥,点在底面射影为底面中心,由推论3知道球心一定在直线上,易算得,设球半径为,当时,有,解得(舍去),当时,有,解得,所以球的表面积为。