ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:223.07KB ,
资源ID:206773      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-206773.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(5.3诱导公式 导学案(2)含答案)为本站会员(N***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

5.3诱导公式 导学案(2)含答案

1、5.3 5.3 诱导公式诱导公式 1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题 2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。 1.数学抽象:理解六组诱导公式; 2.逻辑推理: “借助单位圆中三角函数的定义推导出六组诱导公式; 3.数学运算:利用六组诱导公式进行化简、求值与恒等式证明. 重点:重点:借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角

2、的三角函数化为锐角的三角函数; 难点:难点:解决有关三角函数求值、化简和恒等式证明问题 一、 预习导入 阅读课本 188-192 页,填写。 1.公式一::终边相同的角 2.公式二:终边关于 X 轴对称的角 sin)360sin( ksin)2sin( kcos)360cos( kcos)2cos( ktan)360tan( ktan)2tan( k-sinsin( )coscos( )tantan( )3.公式三:终边关于 Y 轴对称的角 , , , 4.公式四:任意与的终边都是关于原点中心对称的终边关于原点对称的角 sin(1800+ ) = sin, cos(1800+ ) = cos,

3、 , 5.公式五: 终边关于直线 yx 对称的角的诱导公式(公式五): sin(900 ) = sin( 2 ) = ; ccos(900 ) = cos( 2 ) = . 6、公式六:2 型诱导公式(公式六): sin(900+ ) = sin( 2+ ) = ; ccos(900+ ) = cos( 2+ ) = . 【说明说明】 :公式中的指任意角;在角度制和弧度制下,公式都成立; 记忆方法: “_”; 【方法小结方法小结】 :用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是: 化负角的三角函数为正角的三角函数; 化为0,2内的三角函数; 化为锐角的三角函数。 可概括为:“

4、负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值) 。 1(1)sin 256_; (2)tan74_. 2(1)sin3_;(2)cos 330 _; sin180sin()sinsin( )-cos180cos()-coscos( )tan180tan()tantan( )180osin= sin ( + )cos= cos ( + )tan=tano(180 + )tan=tan ( + )3(1)sin56_;(2)tan 1 560 _. 4(1)sin 225 _;(2)cos76_. 5(1)若 sin 13,则 cos2 _; (2)若 cos 45,则 sin2 _.

5、 题型一题型一 给角求值给角求值 例例 1 求下列各三角函数式的值: (1)sin(660 );(2)cos 274;(3)2cos 660 sin 630 ; (4)tan 376 sin53. 跟踪训练一跟踪训练一 1求下列各三角函数式的值: (1)sin 1 320 ;(2)cos316;(3)tan(945 ) 题型二题型二 化简、求值化简、求值 例例 2 化简sin(2 )cos( +)cos(2+)cos(112)cos( )sin(3 )sin( )sin(92+). 跟踪训练二跟踪训练二 1.化简:cos(-2)sin(52+)sin(-)cos(2-). 2已知 cos2 1

6、3,求sin2 cos2cos错误!的值 题型三题型三 给值求值给值求值 例例 3 已知sin(530 ) =15,且 2700 900,求 sin(370+ )的值. 跟踪训练三跟踪训练三 1. 已知 cos(2 3- ) =33,求 cos( 3+ ),sin( - 6),cos(4 3+ )的值. 1已知,则值为( ) 3sin()423sin()4A. B. C. D. 2cos (+)= ,,sin(-) 值为( ) A. B. C. D. 3化简:得( ) A. B. C. D. 4已知,那么的值是 5求值:2sin(1110 ) sin960 + 6已知方程 sin( 3) =

7、2cos( 4),求的值。 答案答案 小试牛刀小试牛刀 1(1)12 (2) 1. 2(1)32 (2)32. 3(1)12 (2) 3. 4. (1)22 (2)32. 5. (1)13 (2)45. 自主探究自主探究 例例 1【答案】(1) 32;(2) 22;(3)0;(4) 12. 【解析】 (1)因为660 2 360 60 , 212123232123 2223212323)2cos()2sin(21sin2 cos2cos2 sin2sin2 cos2cos2 sin23tan23sincos)210cos()225cos(2)sin()23sin(2)2cos(5)sin(所以

8、 sin(660 )sin 60 32. (2)因为274634,所以 cos 274cos 3422. (3)原式2cos(720 60 )sin(720 90 ) 2cos 60 sin 90 21210. (4)tan 376 sin53 tan66 sin23 tan 6 sin 3333212. 跟踪训练一跟踪训练一 1【答案】(1) 32;(2) 32;(3)-1 【解析】 (1)sin 1 320 sin(4 360 120 ) sin(120 )sin(180 60 ) sin 60 32. (2)cos316cos656cos6 cos632. (3)tan(945 )tan

9、 945 tan(225 2 360 )tan 225 tan(180 45 )tan 45 1. 例例 2 【答案】见解析. 【解析】原式=sin(cos)(sin)(sin)cossinsincos= sincos= tan 跟踪训练二跟踪训练二 1.【答案】见解析. 【解析】原式=cos(2-)sin(2+) sin cos =sincos sin cos =sin2. 2.【答案】23. 【解析】原式cos sin cos sin sin sin sin sin 2sin . 又 cos2 13, 所以sin 13. 所以原式2sin 23. 例例 3 【答案】265. 【解析】因为2

10、700 900,所以1430 530 3230, 又因为sin(530 ) =15, 所以530 在第二象限. 所以cos(530 ) = 265 易知(530 ) + (370+ ) = 900, 所以sin(370+ ) = sin900 (530 ) = cos(530 ) = 265 跟踪训练三跟踪训练三 1.【答案】cos( 3+ )=-33 sin( - 6) =33 cos(4 3+ ) =33. 【解析】cos( 3+ )=cos*-(2 3- )+ =-cos(2 3- )=-33. sin( - 6)=sin* 2-(2 3- )+ =cos(2 3- ) =33. cos(4 3+ )=cos*2-(2 3- )+ =cos(2 3- ) =33. 当堂检测当堂检测 1-3CC 4 52 6【答案】34 【解析】 sin(3) = 2cos(4) sin( 3) = 2cos( 4) sin( ) = 2cos( ) sin = 2cos 且cos 0 23143cos4cos3cos2cos2cos5cos2sincos2cos5sin原式