ImageVerifierCode 换一换
格式:PPTX , 页数:26 ,大小:575.71KB ,
资源ID:206659      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-206659.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第1章集合与常用逻辑用语 章末总结课件2-人教A版高中数学必修第一册)为本站会员(N***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

第1章集合与常用逻辑用语 章末总结课件2-人教A版高中数学必修第一册

1、人教人教A版版 必修第一册必修第一册 第一章 集合与常用逻辑用语 章末总结 教学目标及核心素养教学目标及核心素养 教学目标教学目标 1.1.能够掌握集合的概念、元素与集合间的关系、集合与集合间的关系、集合的能够掌握集合的概念、元素与集合间的关系、集合与集合间的关系、集合的基本运算基本运算. .; 2.2.熟练地掌握集合的熟练地掌握集合的VennVenn图表示法和数轴表示法图表示法和数轴表示法, ,培养数形结合思想培养数形结合思想; 3.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明能够利用命题之间的关系判定充要关系或进行充要条件的证明; 4. 4. 掌握全称命题与特称命题真假性的判

2、定掌握全称命题与特称命题真假性的判定且且能正确地对含有一个量词的命题能正确地对含有一个量词的命题进行否定进行否定 核心素养核心素养 a.数学抽象:数学抽象:集合的概念、元素与集合间的关系、集合与集合间的关系、命题集合的概念、元素与集合间的关系、集合与集合间的关系、命题间的关系的判断间的关系的判断; b.逻辑推理:逻辑推理:判断集合间的关系、两个命题满足什么条件判断集合间的关系、两个命题满足什么条件; c.数学运算:数学运算:求集合的交集、并集、补集求集合的交集、并集、补集; d.直观想象:直观想象:通过数形结合在数轴上画出相应的集合区间通过数形结合在数轴上画出相应的集合区间; e.数学建模:转

3、化思想的应用数学建模:转化思想的应用:将集合间的关系、命题间的关系转化为数据,:将集合间的关系、命题间的关系转化为数据,再求相关问题再求相关问题. 专题一 集合的表示 【例1】 设集合A=0,1,2,则集合B=x-y|xA,yA中元素的个数是( ) A.1 B.3 C.5 D.9 分析:正确理解集合B中x,y的取值,结合集合中元素的特征写出集合B. 主题串讲 方法提炼总结升华 解析:因为A=0,1,2,又集合B中元素为x-y,且xA,yA, 所以x的可能取值为0,1,2,y的可能取值为0,1,2. 当x=0时,y=0或1或2,此时对应的x-y的值为0,-1,-2; 当x=1时,y=0或1或2,

4、此时对应的x-y的值为1,0,-1; 当x=2时,y=0或1或2,此时对应的x-y的值为2,1,0. 综上可知,集合B=-2,-1,0,1,2, 所以集合B中元素的个数为5. 答案:C 解题技巧:解题技巧: 1.若已知集合是用描述法给出的,则读懂集合的代表元素及其属性是解题的关键. 2.若已知集合是用列举法给出的,则整体把握元素的共同特征是解题的关键. 3.对集合中的元素要进行验证,保证集合内的元素不重复. 【跟踪训练【跟踪训练1】 设集合A=xZ|0 x4,B=x|(x-4)(x-5)=0,M=x|x=a+b,aA,bB,则集合M中元素的个数为( ) A.3 B.4 C.5 D.6 解析:由

5、已知可得A=1,2,3,B=4,5,则a的取值可能为1,2,3,b的取值可能为4,5.故a+b的值可能为5,6,7,8,即集合M中有4个元素. 答案:B 专题专题二二 集合间的基本关系集合间的基本关系 【例2】 已知集合A=x|0 x4,B=x|xa,若AB,求实数a的取值集合. 分析:将集合A在数轴上表示出来,再将B在数轴上表示出来,使得AB,即可求出a的取值范围. 解:将集合A表示在数轴上(如图),要满足AB,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的取值集合为a|a4. 解题技巧:解题技巧: 1.利用集合的基本关系求参数的问题,借助数轴分析时,要验证参数能否取到端点

6、值. 2.要注意空集是任何集合的子集,是任何非空集合的真子集. 【变式训练2】 已知集合M=x|x-a=0,N=x|ax-1=0,若NM,则实数a的值为 . 解析:当N=,即a=0时,符合题意;当N时,a0, 则 M=a,N 1 ,依题意有1 ,所以 a=1.综上,实数a的值为0或1或-1. 答案:0或1或-1 专题三专题三 集合的基本运算集合的基本运算 【例3】 设全集是实数集R,A 12 3 , 2 2 (1)当a=-1时,求AB和AB; (2)若(RA)B=B,求实数a的取值范围. 分析:(1)先将a=-1代入集合B,再借助数轴求解; (2)先将(RA)B=B转化为BRA,再分B=和B两

7、种情况讨论. 解:(1)当a=-1时,B=x|-2x1, 故 AB 12 1 , B=x|-2x3.(2)由已知可求得RA 3 (RA)B=B,BRA. 当B=时,2aa+2,解得a2; 当 B时,2 +2, +2 12或2 +2,2 3,解得 a 32或32a2.综上可得,a的取值范围是 a 32或 a32 解题技巧:解题技巧: 1.若所给集合是有限集,则首先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.另外,针对此类问题,在解答过程中也常常借助Venn图来求解.这样处理起来比较直观、形象,且解答时不易出错. 2.若所给集合是无限集,则常借助数轴,首先把已知集合及全集分别

8、表示在数轴上,然后再根据交集、并集、补集的定义求解,这样处理比较形象直观,解答过程中注意边界问题. 【跟踪训练3】 设全集U=R,集合A=x|x-2或x5, B=x|x2.求: (1)U(AB); (2)记U(AB)=D,C=x|2a-3x-a,且CD=C,求a的取值范围. 解:(1)由A=x|x-2或x5,B=x|x2, 可知AB=x|x2或x5. 又全集U=R,故U(AB)=x|2x5. (2)由(1)得D=x|2x5.由CD=C,得CD. 当C=时,有-a1; 当 C时,有 2 -3 - ,2 -3 2,- 1. 【例 4】(1)“关于 x 的不等式 x22axa0 的解集为 R”的一个

9、必要不充分条件是()A0a1B0a13C0a1Da13专题四专题四 充分条件、必要条件的判断及应用充分条件、必要条件的判断及应用 解析:解析:要使不等式要使不等式x22axa0的解集为的解集为R,应有,应有(2a)24a0,即,即4a24a0,所以,所以0a0的解集为的解集为R”的充要条件,因此一个必要不充分条件的充要条件,因此一个必要不充分条件是是0a1. 答案:答案:C (2)已知x,y都是非零实数,且xy,求证: 的充要条件是xy0. 11xy证明(2)法一:充分性:由 xy0 及 xy,得xxyyxy,即1x1y.必要性:由1x1y,得1x1y0,即yxxyy,所以 yx0.所以1x0

10、.法二:1x1y1x1y0yxxyyyx0,故由yxxy0. 所以1x0, 即1x0. 1命题按条件和结论的充分性、必要性可分为四类:(1)充分不必要条件,即 pq,而 qp.(2)必要不充分条件,即 pq,而 qp.(3)充要条件,既有 pq,又有 qp.(4)既不充分也不必要条件,既有 pq,又有 qp.2充分条件与必要条件的判断(1)直接利用定义判断:即“若 pq 成立,则 p 是 q 的充分条件,q 是 p 的必要条件” (条件与结论是相对的)解题技巧:解题技巧: (2)利用等价命题的关系判断:利用等价命题的关系判断:“pq”的等价命题的等价命题是是“ q p”即即“若若 q p”成立

11、,则成立,则p是是q的充分条的充分条件,件,q是是p的必要条件的必要条件 (3)利用集合间的包含关系进行判断:如果条件利用集合间的包含关系进行判断:如果条件p和和结论结论q都是集合,那么若都是集合,那么若pq,则,则p是是q的充分条件;若的充分条件;若pq,则,则p是是q的必要条件;若的必要条件;若pq,则,则p是是q的充要条件的充要条件 【跟踪训练4】 (1)已知 p: x28x200, q: x22x1m20(m0),且 p 是 q 的充分不必要条件,则实数 m 的取值范围为_思路探究p 是 q 的充分不必要条件p 代表的集合是 q 代表的集合的真子集列不等式组求解解析由 x28x200,

12、得2x10,由 x22x1m20(m0),得 1mx1m(m0)因为 p 是 q 的充分不必要条件,所以 pq 且 q / p.即x|2x10是x|1mx1m,m0的真子集,所以m0,1m0,1m10,解得 m9.所以实数 m 的取值范围为m|m9答案 m|m9(或9,) (2)已知 Px|a4xa4, Qx|1x3, “xP”是“xQ”的必要条件,求实数 a 的取值范围解 因为“xP”是 xQ 的必要条件,所以 QP. 所以 a41a43解得1a5 即 a 的取值范围是1,5 专题五专题五 全称量词命题与存在量词命题的否定全称量词命题与存在量词命题的否定 【例5】写出下列命题的否定,并判断其

13、真假: (1)有些质数是奇数; (2)菱形的对角线互相垂直; (4)不论m取何实数,方程x2+2x-m=0都有实数根. (3)x0N, 02 2 0 + 1 0; 解析:(1)“有些质数是奇数”是特称命题,其否定为“所有质数都不是奇数”,它是假命题. (2)“菱形的对角线互相垂直”是全称命题,其否定为“有的菱形的对角线不垂直”,它是假命题. (3) “x0N, 02 2 0 1 0”是特称命题,其否定为 “xN, 02 2 0 10”,它是真命题. (4)“不论m取何实数,方程x2+2x-m=0都有实数根”是全称命题,其否定为“存在实数m0,使得方程x2+2x-m0=0没有实数根”,它是真命题

14、. 解题技巧:解题技巧: (1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称量词命题还是存在量词命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论. (2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定. 【跟踪训练 5】写出下列命题的否定,并判断其真假:(1)p:xR,x2-x+410;(2)q:所有的正方形都是矩形;(3)r:xR,x2+3x+70;(4)s:至少有一个实数 x,使 x3+1=0.解析:(1)p:xR,x2-x+140.xR,x2+3x+7= +322 1940 恒成立,r 是真命题.(4)s:xR,x3+10.当 x=-1 时,x3+1=0,s 是假命题.