ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:555.48KB ,
资源ID:202837      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-202837.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高三数学一轮复习考点01:集合(解析版))为本站会员(秦**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2022届高三数学一轮复习考点01:集合(解析版)

1、考点 01 集 合 【命题解读】【命题解读】 集合的运算.高考对集合基本运算的考查,集合由描述法呈现,转向由离散元素呈现解决这类问题的关键在于正确理解集合中元素所具有属性的,明确集合中含有的元素,进一步进行交、并、补等运算常见选择题. 【基础知识回顾基础知识回顾】 1、元素与集合元素与集合 (1)集合中元素的三个特性:确定性、互异性、无序性。 (2)元素与集合的关系是属于或不属于,表示符号分别为和。 2、集合间的基本关系集合间的基本关系 (1)子集:若对任意 xA,都有 xB,则 AB 或 BA。 (2)真子集:若 AB,且集合 B 中至少有一个元素不属于集合 A,则 AB 或 BA。 (3)

2、相等:若 AB,且 BA,则 AB。 (4)空集的性质:是任何集合的子集,是任何非空集合的真子集。 3、集合的基本运算集合的基本运算 (1)交集: 一般地, 由属于集合 A 且属于集合 B 的所有元素组成的集合, 称为 A 与 B 的交集, 记作 AB,即 ABx|xA,且 xB (2)并集:一般地,由所有属于集合 A 或属于集合 B 的元素组成的集合,称为 A 与 B 的并集,记作 AB,即 ABx|xA,或 xB (3)补集:对于一个集合 A,由全集 U 中不属于集合 A 的所有元素组成的集合称为集合 A 相对于全集 U的补集,简称为集合 A 的补集,记作UA,即UAx|xU,且 xA 4

3、、集合的运算性质集合的运算性质 (1)AAA,A,ABBA。 (2)AAA,AA,ABBA。ABABAABBUAUB (3)A(UA),A(UA)U,U(UA)A。 (4)U(AB)(UA)(UB),U(AB)(UA)(UB)。 5、相关结论:、相关结论: (1)若有限集 A 中有 n 个元素,则 A 的子集有 2n个,真子集有 2n1 个。 (2)不含任何元素的集合空集是任何集合 A 的子集,是任何非空集合 B 的真子集记作. 1、 (2021 年徐州摸底)已知集合,则( ) A B C D 【答案】B 【解析】因为,所以. 故选:B. 2、 (2021 高三期末)已知集合,则( ) A B

4、 C D 【答案】D 【解析】由集合, 所以 故选:D 3、 (2021 贵溪市实验中学高一期末)已知全集,则( ) A B C D 【答案】D 【解析】, 故选:D. 4、 (2021 山东德州市 高三期末)设集合,则( ) 4,5,6,3,5,7ABAB I54,63,4,5,6,74,5,6,3,5,7AB 5AB I1,2,3P=1,3,5Q PQ11,32,51,2,3,51,2,3P=1,3,5Q 1,2,3,5PQ2,4210 ,3UAx xxBxxRNUAB 37xx33xx 剟4.5,64,5,6,72421 037UAx xxxx剟?37 4,5,6,7UABxxN2|56

5、 0 , |20AxxxBx xAB IA B C D 【答案】A 【解析】 又 所以 故选:A 5、 (多选题)已知全集UR,集合A,B满足AB,则下列选项正确的有( ) AABBI BABBU C()UAB I D()UAB I 【答案】B、D 【解析】ABQ,ABAI,ABBU,()UC AB I,()UAC B I, 考向一 集合的基本概念 例 1、下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合y|yx21与集合(x,y)|yx21是同一个集合; (3)这些数组成的集合有 5 个元素; (4)集合(x,y)|xy0,x,yR是指第二和第四象限内的点集 A0 个 B1

6、 个 C2 个 D3 个 【答案】A 【解析】 (1)中很小的实数没有确定的标准,不满足集合元素的确定性; (2)中集合y|yx21的元素为实数,而集合(x,y)|yx21的元素是点; (3)有集合元素的互异性这些数组成的集合有 3 个元素; (4)集合(x,y)|xy0,x,yR中还包括实数轴上的点 故选:A 1,2) 3,2) 2,2)(2,62|56 0| 16 ,Axxxxx |20Bx x| 12ABxx 变式 1、已知集合AxZ Z x1x20,则集合A的子集的个数为( ) A 7 B 8 C 15 D16 【答案】B 【解析】由x1x20,可得(x1)(x2)0,且x2,解得1x

7、2.又xZ Z,可得x1,0,1,A1,0,1集合A的子集的个数为 238. 变式 2、若集合AxR R|ax23x20中只有一个元素,则a( ) A.92 B.98 C.0 D.0 或98 【答案】D 【解析】若集合A中只有一个元素,则方程ax23x20 只有一个实根或有两个相等实根. 当a0 时,x23,符合题意;当 a0 时,由 (3)28a0,得 a98, 所以a的取值为 0 或98. 方法总结: 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义。 2.利用集合元素的限制条件求

8、参数的值或确定集合中元素的个数时, 要注意检验集合中的元素是否满足互异性。特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性 考向二 集合间的基本关系 例 2、 (2021苏州一模)如图,阴影部分表示的集合为 AA (B) BB (A) CA (B) DB (A) 【答案】B 【解析】从图中可以看出阴影部分在A 内,同时也在集合 B 内,故选 B 例 3、 (2021连云港一模)若非空且互不相等的集合 M,N,P 满足:MINM,NUPP,则 MUP A BM CN DP 【答案】D 【解析】M N,N P,则 MPP,故选 D. 变式 1、已知集合 Mx xk44,

9、kZ,集合 Nx xk84,kZ,则( ) AMN BMN CNM DMNM 【答案】B 【解析】由题意可知,Mx x2k484,kZ x x2n84,nZ, Nx x2k84或x2k184,kZ, 所以 MN,故选 B。 变式 2、已知集合 Ax|2x7,Bx|m1x2m1,若 BA,则实数 m 的取值范围是_. 【答案】(,4 【解析】当B 时,有m12m1,则m2. 当B 时,若BA,如图. 则m12,2m17,m12m1, 解得 20,则RA( ) Ax|1x2 Bx|1x2 Cx|x2 Dx|x1x|x2 【答案】B 【解析】方法一:Ax|(x2)(x1)0 x|x2,所以RAx|1

10、x2,故选 B。 方法二:因为 Ax|x2x20,所以RAx|x2x20 x|1x2,故选 B。 方法总结:方法总结: 集合运算的常用方法 若集合中的元素是离散的,常用 Venn 图求解; 若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况 利用集合的运算求参数的值或取值范围的方法 与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到; 若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解 考向四 集合的新定义问题 例 6、.若 xA,则1xA,就称 A 是伙伴关系集合,集合 M1,0,12,2,3 的所有非空子集中具有伙伴关系的集合的个数是(

11、) A.1 B.3 C.7 D.31 【答案】B 【解析】 : 具有伙伴关系的元素组是1,12, 2, 所以具有伙伴关系的集合有 3 个: 1,12,2 ,1,12,2 . 【变式】给定集合 A,若对于任意 a,bA,有 abA,且 abA,则称集合 A 为闭集合,给出如下三个结论: 集合 A4,2,0,2,4为闭集合; 集合 An|n3k,kZ Z为闭集合; 若集合 A1,A2为闭集合,则 A1A2为闭集合 其中正确结论的序号是_ 【答案】 【解析】 :中,4(2)6A,所以不正确;中,设n1,n2A,n13k1,n23k2,k1,k2Z Z,则n1n2A,n1n2A,所以正确;中,令A1n

12、|n3k,kZ Z,A2n|n 2k,kZ Z,则A1,A2为闭集合,但 3k 2k(A1A2),故A1A2不是闭集合,所以不正确 方法总结:正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口。 1、 【2020 年高考天津】设全集 3, 2, 1,0,1,2,3U ,集合 1,0,1,2, 3,0,2,3AB ,则UAB A 3,3 B0,2 C 1,1 D 3, 2, 1,1,3 【答案】C 【解析】由题意结合补集的定义可知2, 1,1UB ,则U1,1AB

13、 I . 故选 C 2、 【2020 年高考全国卷理数】已知集合 U=2,1,0,1,2,3,A=1,0,1,B=1,2,则()UAB U A2,3 B2,2,3 C2,1,0,3 D2,1,0,2,3 【答案】A 【解析】由题意可得1,0,1,2AB ,则 U2,3AB U. 故选 A 3、 【2020 年高考全国卷理数】已知集合( , )| ,Ax yx yyx*N,( , )|8Bx yxy,则ABI中元素的个数为 A2 B3 C4 D6 【答案】C 【解析】由题意,ABI中的元素满足8yxxy,且*, x yN, 由82xyx,得4x, 所以满足8xy的有(1,7),(2,6),(3,

14、5),(4,4), 故ABI中元素的个数为 4. 故选 C 4、 【2020 年新高考全国卷】设集合 A=x|1x3,B=x|2x4,则 AB= Ax|2x3 Bx|2x3 Cx|1x4 Dx|1x0,B=x|x10,则 AB= A(,1) B(2,1) C(3,1) D(3,+) 【答案】A 【解析】由题意得,2560|2|Axxxxx或3x ,101|Bx xx x ,则 |1(,1)ABx x I故选 A 6、 (2021无锡一模)1 设集合 M=|21xx,1|01xNxx,则 MN( ) A0,1) B(0,1) C(1,+) D(1,+) 【答案】B 【解析】 7、 (2021扬州

15、一模)设集合 A=2|40 x x ,3|log1Bxx,则 AB( ) A(2,3) B(2,2) C(0,3) D(0,2) 【答案】D 【解析】由已知得,,故,选 D 8、 (2021 浙江绍兴市 高三期末)用表示非空集合 A 中元素的个数,定义( )C A, 已知集合,且,设实数 a 的所有可能取值构成集合 S,则( ) A0 B1 C2 D3 【答案】D 【解析】由,可得 因为等价于或, 且,所以集合要么是单元素集,要么是三元素集 (1)若是单元素集,则方程有两个相等实数根,方程无实数根,故; (2)若是三元素集,则方程有两个不相等实数根,方程有两个相等且异于方程的实数根,即且 综上所求或,即,故, 故选:D ( )( ),( )( )( )( ),( )( )C AC B C AC BA BC BC A C AC B2|0Ax xx22|10Bxxaxxax1A B( )C S 2|0Ax xx1,0A 22()(1)0 xax xax20 xax+=210 xax 1,0 ,1AA B BB20 xax+=210 xax 0a B20 xax+=210 xax 20 xax+=2402aa 0a0a 2a 0, 2 2S ,( )3C S