ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:40.37KB ,
资源ID:202780      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-202780.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高考数学一轮复习总教案:9.5圆锥曲线综合问题)为本站会员(秦**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

高考数学一轮复习总教案:9.5圆锥曲线综合问题

1、9.5 锥曲线综合问题锥曲线综合问题 典例精析典例精析 题型一 求轨迹方程 【例 1】已知抛物线的方程为 x22y,F 是抛物线的焦点,过点 F 的直线 l 与抛物线交于 A、B 两点,分别过点 A、B 作抛物线的两条切线 l1 和 l2,记 l1 和 l2 交于点 M. (1)求证:l1l2; (2)求点 M 的轨迹方程. 【解析】(1)依题意,直线 l 的斜率存在,设直线 l 的方程为 ykx12. 联立消去 y 整理得 x22kx10.设 A 的坐标为(x1,y1),B 的坐标为(x2,y2),则有 x1x21,将抛物线方程改写为 y12x2,求导得 yx. 所以过点 A 的切线 l1

2、的斜率是 k1x1,过点 B 的切线 l2 的斜率是 k2x2. 因为 k1k2x1x21,所以 l1l2. (2)直线 l1 的方程为 yy1k1(xx1),即 yx2 12x1(xx1). 同理直线 l2 的方程为 yx2 22x2(xx2). 联立这两个方程消去 y 得x2 12x2 22x2(xx2)x1(xx1), 整理得(x1x2)(xx1x22)0, 注意到 x1x2,所以 xx1x22. 此时 yx2 12x1(xx1)x2 12x1(x1x22x1)x1x2212. 由(1)知 x1x22k,所以 xx1x22kR. 所以点 M 的轨迹方程是 y12. 22121xykxy【

3、点拨】直接法是求轨迹方程最重要的方法之一,本题用的就是直接法.要注意“求轨迹方程”和“求轨迹”是两个不同概念, “求轨迹”除了首先要求我们求出方程, 还要说明方程轨迹的形状,这就需要我们对各种基本曲线方程和它的形态的对应关系了如指掌. 【变式训练 1】 已知ABC 的顶点为 A(5,0), B(5,0), ABC 的内切圆圆心在直线 x3 上,则顶点 C 的轨迹方程是( ) A.x29y2161 B.x216y291 C.x29y2161(x3) D.x216y291(x4) 【解析】如图,|AD|AE|8,|BF|BE|2,|CD|CF|, 所以|CA|CB|826, 根据双曲线定义,所求轨

4、迹是以 A、B 为焦点,实轴长为 6 的双曲线的右支,方程为x29y2161(x3),故选 C. 题型二 圆锥曲线的有关最值 【例 2】已知菱形 ABCD 的顶点 A、C 在椭圆 x23y24 上,对角线 BD 所在直线的斜率为1.当ABC60 时,求菱形 ABCD 面积的最大值. 【解析】因为四边形 ABCD 为菱形,所以 ACBD. 于是可设直线 AC 的方程为 yxn. 由得 4x26nx3n240. 因为 A,C 在椭圆上,所以 12n2640,解得4 33n4 33. 设 A,C 两点坐标分别为(x1,y1),(x2,y2),则 x1x23n2,x1x23n244, y1x1n,y2

5、x2n. 所以 y1y2n2. 因为四边形 ABCD 为菱形,且ABC60 ,所以|AB|BC|CA|. nxyyx, 4322所以菱形 ABCD 的面积 S32|AC|2. 又|AC|2(x1x2)2(y1y2)23n2162,所以 S34(3n216) (4 33n4 33). 所以当 n0 时,菱形 ABCD 的面积取得最大值 4 3. 【点拨】建立“目标函数”,借助代数方法求最值,要特别注意自变量的取值范围.在考试中很多考生没有利用判别式求出 n 的取值范围,虽然也能得出答案,但是得分损失不少. 【变式训练 2】已知抛物线 yx21 上有一定点 B(1,0)和两个动点 P、Q,若 BP

6、PQ,则点 Q 横坐标的取值范围是 . 【解析】如图,B(1,0),设 P(xP,x2 P1),Q(xQ,x2 Q1), 由 kBPkPQ1,得x2 P1xP1x2 Qx2 PxQxP1. 所以 xQxP1xP1(xP1)1xP11. 因为|xP11xP1|2,所以 xQ1 或 xQ3. 题型三 求参数的取值范围及最值的综合题 【例 3】(2013 浙江模拟)已知 m1,直线 l:xmym220,椭圆 C:x2m2y21,F1,F2分别为椭圆 C 的左、右焦点. (1)当直线 l 过右焦点 F2 时,求直线 l 的方程; (2)设直线 l 与椭圆 C 交于 A,B 两点,AF1F2,BF1F2

7、 的重心分别为 G,H.若原点 O 在以线段 GH 为直径的圆内,求实数 m 的取值范围. 【解析】(1)因为直线 l:xmym220 经过 F2( m21,0), 所以 m21m22,解得 m22, 又因为 m1,所以 m 2. 故直线 l 的方程为 x 2y10. (2)A(x1,y1),B(x2,y2), 由消去 x 得 2y2mym2410, 则由 m28(m241)m280 知 m28, 且有 y1y2m2,y1y2m2812. 由于 F1(c,0),F2(c,0),故 O 为 F1F2 的中点, 由2, 2,得 G(x13,y13),H(x23,y23), |GH|2(x1x2)2

8、9(y1y2)29. 设 M 是 GH 的中点,则 M(x1x26,y1y26), 由题意可知,2|MO|GH|,即 4(x1x26)2(y1y26)2(x1x2)29(y1y2)29, 即 x1x2y1y20. 而 x1x2y1y2(my1m22)(my2m22)y1y2(m21)(m2812). 所以m28120,即 m24. 又因为 m1 且 0,所以 1m2. 所以 m 的取值范围是(1,2). 【点拨】本题主要考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力. 【变式训练 3】若双曲线 x2ay21 的右支上存在三点 A、B、C

9、 使ABC 为正三角形,其中一个顶点 A 与双曲线右顶点重合,则 a 的取值范围为 . 【解析】设 B(m,m21a),则 C(m,m21a)(m1), 又 A(1,0),由 ABBC 得(m1)2m21a(2m21a)2, 1,22222ymxmmyxAGGOBHHO所以 a3m1m13(12m1)3,即 a 的取值范围为(3,). 总结提高 1.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程, 其实质就是利用题设中的几何条件,用“坐标法”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、待定系数法. 2.最值问题的代数解法,是从动态角度去研究解析几何中的数学问题的主要内容,其解法是设变量、建立目标函数、转化为求函数的最值.其中,自变量的取值范围由直线和圆锥曲线的位置关系(即判别式与 0 的关系)确定. 3.范围问题,主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围.其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.