ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:1.14MB ,
资源ID:202640      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-202640.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【最后十套】2021年高考名校考前提分仿真数学理科试卷(一)含答案解析)为本站会员(秦**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【最后十套】2021年高考名校考前提分仿真数学理科试卷(一)含答案解析

1、【最后十套】2021年高考名校考前提分仿真卷理科数学(一)注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。第卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1集合,则( )ABCD2已知为复数,则下列命

2、题正确的是( )A若,则B若,则为实数C若,则为纯虚数D若,则3若函数,则( )ABC1D4( )ABCD5已知平行四边形中,若,则( )ABCD6函数的部分图象大致为( )ABCD7已知是各项均为正数的等比数列,其前项和为,且是等差数列,给出以下结论:是等差数列;是等比数列;是等差数列;是等比数列则其中正确结论的个数为( )ABCD8如图是函数的部分图象,若,则下列判断错误的是( )A的最小正周期为B在上有两个极小值点C的图象向右平移个单位长度后得到的函数与具有相同的零点D在上单调递增9已知是椭圆的一个焦点,若直线与椭圆相交于两点,且,则椭圆离心率是( )ABCD10在中,为边上一点,且满足

3、,此时,则边长等于( )ABC4D11已知偶函数满足,且在处的导数,则曲线在处的切线方程为( )ABCD12如图所示,在棱长为2的正方体中,点,分别是棱,的中点,现在截面内随机取一点,则此点满足的概率为( )ABCD第卷(非选择题)二、填空题:本大题共4小题,每小题5分13如图所示,网格纸上的小正方形的边长为,粗线是某几何体的三视图,则该几何体的体积为_14_(用数字作答)15已知点是直线上的一点,将直线绕点逆时针方向旋转角,所得直线方程是,若将它继续旋转角,所得直线方程是,则直线的方程是_16已知正项数列的前项和为,数列的前项积为,若,则数列中最接近2019的是第_项三、解答题:本大题共6个

4、大题,共70分解答应写出文字说明、证明过程或演算步骤17(12分)在中,角所对的边分别为,且(1)求角的大小;(2)当时,求的最大值18(12分)如图,是半圆的直径,是半圆上异于的一个动点,平面,且,(1)证明:平面平面;(2)当为半圆弧的中点时,求二面角的正弦值19(12分)2020年10月,中共中央办公厅、国务院办公厅印发了关于全面加强和改进新时代学校体育工作的意见,某地积极开展中小学健康促进行动,决定在2021年体育中考中再增加定的分数,规定:考生须参加游泳、长跑、一分钟跳绳三项测试,其中一分钟跳绳满分20分,某校在初三上学期开始要掌握全年级学生一分钟跳绳情况,随机抽取了100名学生进行

5、测试,得到如图所示频率分布直方图,且规定计分规则如下表:每分钟跳绳个数得分17181920(1)现从样本的100名学生中任意选取2人,求两人得分之和不大于35分的概率;(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,整体成绩差异略有变化假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,方差为169,且该校初三年级所有学生正式测试时每分钟的跳绳个数服从正态分布,用样本数据的期望和方差估计总体的期望和方差(各组数据用区间的中点值代替)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望

6、;判断该校初三年级所有学生正式测试时的满分率是否能达到85%,说明理由附:若随机变量服从正态分布,则,20(12分)已知椭圆经过点,过右焦点且与轴垂直的直线被截得的线段长为3(1)求椭圆的方程;(2)点在椭圆上,直线与交于点,过点作的垂线,与轴交于点,若,求点的坐标21(12分)已知函数,(1)若方程存在两个不等的实根,求a的取值范围;(2)满足(1)问的条件下,证明:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22(10分)【选修4-4:坐标系与参数方程】以直角坐标系的原点为极点,轴非负半轴为极轴建立极坐标系在极坐标系中,曲线,点在直角坐标系中,直线的参数方程为(为参

7、数)(1)将曲线的极坐标方程化为直角坐标方程,并判与4的大小关系;(2)直线与曲线交于、两点,为曲线的右顶点,求的面积23(10分)【选修4-5:不等式选讲】已知函数(1)当时,求不等式的解集;(2)当,时,恒成立,求的取值范围【最后十套】2021年高考名校考前提分仿真卷理科数学(一)注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿

8、纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。第卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1【答案】B【解析】由可得,所以,所以,故选B2【答案】B【解析】A:时,显然,错误;B:,则虚部为0,即为实数,正确;C:为非零实数时,也成立,错误;D:,时,错误,故选B3【答案】D【解析】函数,则,所以,故选D4【答案】B【解析】,故选B5【答案】D【解析】因为四边形为平行四边形,所以,又,所以,因此,解得,所以,故选D6【答案】C【解析】当时,排除A;当时,此时,且随着的增大,越来越大,排除B、D,故选C7

9、【答案】B【解析】是等差数列,即,整理得,是各项均为正数的等比数列,公比,对于,数列是以为首项,为公差的等差数列,正确;对于,不是不为零的常数,数列不是等比数列,错误;对于,数列是首项为,公差的等差数列,正确;对于,又,数列是以为首项,为公比的等比数列,正确,故选B8【答案】D【解析】由函数的图象,可得,又由,可得,所以,可得,因为,可得,所以,解得,因为,可得,所以,则,所以,的最小正周期为,所以A正确;令,即,可得,解得,当时,;当时,其中和是在上有两个极小值点,故B正确;由的图象向右平移个单位长度后得,故向右平移个单位长度后所得函数与有相同的零点,故C正确;当时,显然不是递增区间,故D错

10、误,故选D9【答案】A【解析】设直线倾斜角为,则,设另一个焦点为,为坐标原点,由对称性及知,四边形为矩形,所以,所以点的坐标为,代入椭圆可得且,解得或(舍去),则,即,故选A10【答案】D【解析】如图,结合题意绘出图象,因为,所以,因为,所以,在中,即,解得或(舍去),在中,即,解得,故选D11【答案】A【解析】由条件知,所以,从而,即函数的周期为4,在中,令,得,所以,又,所以曲线在处的切线方程为,即,故选A12【答案】D【解析】连接交平面于,则为和的交点,由正方体的性质可得平面,设,即,满足的点的轨迹所围成的面积为,又截面的面积为,故所求概率,故选D第卷(非选择题)二、填空题:本大题共4小

11、题,每小题5分13【答案】【解析】由三视图知,该几何体的直观图为如图所示的四棱雉,四棱锥是一个底面为边长为的正方形,高为的正四棱雉,所以该几何体的体积为,故答案为14【答案】1【解析】15【答案】【解析】,由于直线可看成直线先绕点逆时针方向旋转角,再继续旋转角得到,则直线与直线垂直,即直线的斜率为,所以直线的方程为,即,故答案为16【答案】45【解析】,可得,且;则,即,即,两式相除得,则,由,解得;由,解得;猜想,用数学归纳法证明,当时,满足,假设当时,猜想成立,即,则当时,满足,故猜想成立,即,时,当,不满足,故,由,当时,当时,当时,综上可得数列中最接近2019的是第45项,故答案为45

12、三、解答题:本大题共6个大题,共70分解答应写出文字说明、证明过程或演算步骤17【答案】(1);(2)2【解析】(1)由正弦定理得,即,又,所以(2)由,所以,则,因为,所以,当,即时,故的最大值是18【答案】(1)证明见解析;(2)【解析】(1)因为平面,平面,所以,因为是半圆的直径,所以,因为,所以平面又,所以四边形为平行四边形,则,所以平面因为平面,所以平面平面(2)由题意可得两两互相垂直,则以为原点,的方向分别为轴轴轴正方向建立如图所示空间直角坐标系,由已知可得:,于是,设平面的法向量为,则,即,取,则,得,易知,为平面的一个法向量,所以,所以二面角的正弦值为19【答案】(1);(2)

13、分布列见解析,期望为;不能,答案见解析【解析】(1)设“选取得2人得分之和不大于35”为事件A,则A的基本事件总数为由题意,得17分的学生人数为人,得18分的人数为人事件A发生包含两种可能:一种是两人得分均为17分,另一种是两人中1人得17分,1人得18分,所以事件A的基本事件个数,所以事件A的概率(2)由题意,正式测试时,则所以即在全年级所有学生中任取1人,每分钟跳绳个数在195个以上的概率为,由题意,则则的分布列:0123所以由,所以,所以预测正式测试时每分钟跳绳个数在182个以上的人数比例为,由题意,每分钟跳绳个数不少于185个才能得到满分,因此可以预测该校初三年级所有学生正式测试时的满

14、分率20【答案】(1);(2)【解析】(1)由条件知,设,将代入椭圆方程得,得,直线被截得的线段长为3,即,所以,因此椭圆的方程为(2)由(1)知直线,点,设直线的方程为,点,联立,得,则,于是,即在直线的方程中,令,得,则直线的方程为,令,得,即因为,所以,即,所以,所以点的坐标为21【答案】(1);(2)证明见解析【解析】(1)由题意,可得,转化为函数与直线在上有两个不同交点,故当时,;当时,故在上单调递增,在上单调递减,所以又,故当时,;当时,可得另解:,则,当时,恒成立,不满足题意;当时,单调递减,则,当;,综上(2)证明:,因为x1,x2是的两个根,故,要证,只需证,即证,即证,即只需证明成立,即证不妨设,故(*) 令,则在上单调递增,则,故(*)式成立,即要证不等式得证22【答案】(1),;(2)【解析】(1)曲线,即,根据,可得,化简为,即,即,所以曲线的直角坐标方程为,满足,即点在椭圆上,椭圆的焦点,所以(2)直线的直角坐标方程是,与椭圆方程联立方程,得,解得或,直线与轴的交点,则23【答案】(1);(2)【解析】当时,当时,由,可得,即,解得或,此时;当时,由,可得,即,解得或,此时;当时,由可得,即,解得,此时,综上所述,当时,不等式的解集为(2)当,则,当时,则,所以,由基本不等式可得,当且仅当时,等号成立,因此,实数的取值范围是