ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:918KB ,
资源ID:19858      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-19858.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【人教版】数学九年级下:29.2.3由三视图确定几何体的面积或体积课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【人教版】数学九年级下:29.2.3由三视图确定几何体的面积或体积课件

1、第二十九章 投影与视图,导入新课,讲授新课,当堂练习,课堂小结,29.2 三视图,第3课时 由三视图确定几何体的面积或体积,1. 能熟练地画出物体的三视图和由三视图想象出物体形状,进一步提高空间想象能力. (难点) 2. 由三视图想象出立体图形后能进行简单的面积或体积的计算. (重点),学习目标,导入新课,如图所示是一个立体图形的三视图, (1) 请根据视图说出立体图形的名称,并画出它的展开图.,(2) 请指出三视图、立体图形、展开图之间的对应边.,复习引入,讲授新课,分析: 1. 应先由三视图想象出; 2. 画出物体的 .,密封罐的立体形状,展开图,例1 某工厂要加工一批密封罐,设计者给出了

2、密封罐的三视图,请你按照三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).,合作探究,解:由三视图可知,密封罐的形状是正六棱柱.,50mm,50mm,密封罐的高为50mm,底面正六边形的直径为100mm,边长为50mm,,100mm,如图,是它的展开图.,由展开图可知,制作一个密封罐所需钢板的面积为,1. 三种图形的转化:,三视图,立体图,展开图,2. 由三视图求立体图形的面积的方法:(1) 先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高.(2) 将立体图形展开成一个平面图形 (展开图),观察它的组成部分.(3) 最后根据已知数据,求出展开图的面积.,归纳:,如图是一

3、个几何体的三视图根据图示,可计算 出该几何体的侧面积为 ,104,练一练,例2 如图是一个几何体的三视图,根据所示数据,求该几何体的表面积和体积.,分析:由三视图可知该几何体是由圆柱、长方体组合而成. 分别计算它们的表面积和体积,然后相加即可.,解:该图形上、下部分分别是圆柱、长方体,根据图中数据得:,表面积为2032+30402+25402+25302 =(5 900+640)(cm2),体积为 253040+10232=(30 000+3 200)(cm3).,一个机器零件的三视图如图所示(单位:cm),这个机器零件是一个什么样的立体图形?它的体积是多少?,15,10,12,15,10,主

4、视图,左视图,俯视图,解:长方体,其体积为101215=1800(cm3).,练一练,1. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为 ( ),A. 6 B. 8 C. 12 D. 24,当堂练习,B,2. 如图是一个几何体的三视图,根据图中提供的数据(单位:cm),可求得这个几何体的体积为 .,3 cm3,主视图 左视图 俯视图,3,1,1,3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为 cm2.,2,4. 如图是一个由若干个棱长为1cm的正方体构成的几何体的三视图(1) 请写出构成这个几何体的正方体的个数为 ;(2) 计算这个几何体的表面积

5、为 ,5,20cm2,5. 如图是一个几何体的三视图,试描绘出这个零件的形状,并求出此三视图所描述的几何体的表面积.,解:该几何体的表面积为,22+222+1/244=20 .,6. 某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为 1 的矩形;左视图是半径为1 的四分之一圆以及高为1的矩形;俯视图是半径为1 的圆,求此图形的体积 (参考公式:V球 R3),解:由已知可得该几何体是一个下部为圆柱,上部为1/4球的组合体由三视图可得,下部圆柱的底面半径为1,高为1,则V圆柱,上部1/4球的半径为1,则V1/4球/3,故此几何体的体积为4/3.,课堂小结,1. 三种图形的转化:,2. 由三视图求立体图形的体积 (或面积) 的方法:(1) 先根据给出的三视图确定立体图形,并确定立 体图形的长、宽、高、底面半径等;(2) 根据已知数据,求出立体图形的体积 (或将立 体图形展开成一个平面图形,求出展开图的面积).,三视图,立体图,展开图,