ImageVerifierCode 换一换
格式:PPT , 页数:28 ,大小:1.06MB ,
资源ID:19815      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-19815.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【人教版】数学九年级下:28.1.2余弦函数和正切函数ppt课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【人教版】数学九年级下:28.1.2余弦函数和正切函数ppt课件

1、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第2课时 余弦函数和正切函数,1. 认识并理解余弦、正切的概念进而得到锐角三角函数的概念. (重点) 2. 能灵活运用锐角三角函数进行相关运算. (重点、难点),导入新课,问题引入,如图,在 RtABC 中,C90,当锐角 A 确定时,A的对边与斜边的比就随之确定.,此时,其他边之间的比是否也确定了呢?,讲授新课,合作探究,如图所示, ABC 和 DEF 都是直角三角形, 其中A =D,C =F = 90,则 成立吗?为什么?,我们来试着证明前面的问题:,从而 sinB = sinE,,因此,在有一个锐

2、角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关,如下图所示,在直角三角形中,我们把锐角A的邻边与斜边的比叫做A的余弦,记作cosA,即,归纳:,斜边,邻边,从上述探究和证明过程看出,对于任意锐角,有cos = sin (90)从而有sin = cos (90),练一练,1. 在 RtABC 中,C90,AB13,AC12,则cosA .,2. 求 cos30,cos60,cos45的值,解:cos30= sin (9030) = sin60 = ;,cos60= sin (9060) = sin30=,cos45= sin (9045) = sin45=

3、,合作探究,如图所示, ABC 和 DEF 都是直角三角形, 其中A =D,C =F = 90,则 成立吗?为什么?, RtABC RtDEF.,即 BC DF = AC EF ,,由此可得,在有一个锐角相等的所有直角三角形中,这个锐角的对边与邻边的比值是一个常数,与直角三角形的大小无关,如下图,在直角三角形中,我们把锐角A的对边与邻边的比叫做 A 的正切,记作 tanA, 即,归纳:,A的正弦、余弦、正切都是A 的三角函数.,如果两个角互余,那么这两个角的正切值有什么关系?,想一想:,1. 如图,平面直角坐标系中,若点 P 坐标为 (3,4),则 tan POQ=_.,练一练,2. 如图,A

4、BC 中一边 BC 与以 AC 为直径的 O相切与点 C,若 BC=4,AB=5,则 tanA=_.,例1 如图,在 RtABC 中,C=90,AB=10,BC=6,求sinA,cosA,tanA的值.,解:由勾股定理得,因此,典例精析,1. 在RtABC中,C = 90,AC = 12,AB =13.sinA=_,cosA=_,tanA=_,sinB=_,cosB=_,tanB=_.,练一练,2. 在RtABC中,C90,AC=2,BC=3.sinA=_,cosA=_,tanA=_,sinB=_,cosB=_,tanB=_.,例2 如图,在 RtABC中,C = 90,BC = 6, sin

5、A = ,求 cosA、tanB 的值,解:,又,解:,如图,在 RtABC 中,C = 90,AC = 8, tanA= , 求sinA,cosB 的值,练一练,1. 如图,在 RtABC 中,斜边 AB 的长为 m,A=35,则直角边 BC 的长是 ( ),A.,B.,C.,D.,A,当堂练习,2. 随着锐角 的增大,cos 的值 ( )A. 增大 B. 减小 C. 不变 D. 不确定,B,3. 已知 A,B 为锐角,(1) 若A =B,则 cosA cosB;(2) 若 tanA = tanB,则A B.(3) 若 tanA tanB = 1,则 A 与 B 的关系为:.,=,=,4.

6、tan30= ,tan60= .,A +B = 90,5. sin70,cos70,tan70的大小关系是 ( )A. tan70cos70sin70B. cos70tan70sin70 C. sin70cos70tan70D. cos70sin70tan70,解析:根据锐角三角函数的概念,知 sin701,cos701,tan701. 又cos70sin20,正弦值随着角的增大而增大,sin70cos70sin20. 故选D.,D,6. 如图,在 RtABC 中,C = 90,cosA = ,求 sinA、tanA 的值,解:,设 AC = 15k,则 AB = 17k.,7. 如图,在 R

7、tABC 中,ACB = 90,CDAB,垂足为 D. 若 AD = 6,CD = 8. 求 tanB 的值.,解: ACB ADC =90,,B+ A=90, ACD+ A =90,,B = ACD,, tanB = tanACD =,8. 如图,在ABC中,AB=AC=4,BC=6. 求cosB 及tanB 的值.,解:过点 A 作 ADBC 于 D., AB = AC,, BD = CD = 3,,在 RtABD 中, tanB =,D,提示:求锐角的三角函数值的问题,当图形中没有直角三角形时,可以用恰当的方法构造直角三角形.,课堂小结,余弦函数和 正切函数,在直角三角形中,锐角 A 的邻边与斜边的比叫做角 A 的余弦,A的大小确定的情况下,cosA,tanA为定值,与三角形的大小无关,在直角三角形中,锐角 A 的对边与邻边的比叫做角 A 的正切,余弦,正切,性质,