1、14.14.归一、归总问题归一、归总问题 知识要点梳理知识要点梳理 一、归一问题一、归一问题 归一问题来历:归一问题来历:我国珠算除法中有一种方法,称为归除法归除法,除数是几,就称几归;除数是,就除数是,就 称为归称为归。而归一的意思,就是用除法求出单一量,这就是归一的说法。用除法求出单一量,这就是归一的说法。 在解答某些应用题时,常常需要先找出“单一量” ,然后以这个“单一量”为标准,根据其他条件求出 结果。用这种解题思路解答的应用题,称为归一问题。所谓“单一量”是指单位时间的工作量、物品的单 价、单位面积的产量、单位时间所走的路程等。 归一问题有两种基本类型如下:归一问题有两种基本类型如下
2、: 先求单一量再 一次归一:一步求单一量 归 正归一:求几个单一量 一 是多少(乘) 二次归一:两步求单一量 问 题 反归一:先求单一量再求包含几个单一量(除) 正、反归一问题的相同点是:正、反归一问题的相同点是:第一步先求出单一量;不同点是:第二步正归一是乘法,反归一是 除法。 二、归总问题二、归总问题 与归一问题类似的是归总问题,归一问题是找出“单一量” ,而归总问题是先找出“总量” ,然后再根 据其他条件算出所求的问题,叫归总问题。所谓“总量”是指几小时(几天)的总工作量、几亩地上的总 产量、总路程、总产量、工作总量、物品的总价等。 数量关系:份数量份数总量 总量份数量份数 总量另一份数
3、另一每份数量 解题思路:先求出总数量,再根据题意得出所求的数量。 考点精讲分析考点精讲分析 典例精讲典例精讲 考点考点 1 1 正归一问题正归一问题 【例】【例】 一只小蜗牛分钟爬行 12 分米,照这样速度小时爬行多少米? 【精析】【精析】 为了求出蜗牛小时爬多少米,必须先求出分钟爬多少分米单一量(一次归一)即蜗牛 的速度,然后以单一量为依据按要求算出结果。 【答案】【答案】 小蜗牛每分钟爬行多少分米? 12(分米) 小时爬几米? 小时60 分 60120(分米)12(米) 答:小蜗牛小时爬行 12 米。 【归纳总结】【归纳总结】 一般情况下第一步先求出单一量,第二步求几个单一量是多少。 【例
4、】【例】 王奶奶家养了头奶牛,天产牛奶 630 千克,照这样计算,头奶牛 15 天可产牛奶多少 千克? 【精析】【精析】 第一步先算头奶牛天产的牛奶为单一量一次归一,再算头奶牛天产的牛奶为单一 量二次归一,最后头奶牛天可产牛奶多少千克。 【答案】【答案】 头奶牛天产奶多少千克? 630(千克) 头奶牛天可产牛奶多少千克? 18152160(千克) 答:头奶牛 15 天可产牛奶 2160 千克。 【归纳总结】【归纳总结】 二次归一问题,一般情况下两步求出单一量,然后还是求几个单一量是多少。 考点考点 3 3 反归一问题反归一问题 【例】【例】 台车床小时生产 240 个,照这样计算,20 台这样
5、的车床小时可以生产零件多少个? 小时生产 160 个零件,至少需要几台车床? 【精析】【精析】 20 台这样的车床小时可以生产零件多少个必须先算出台小时生产多少个,即二次归 一问题中的反归一,分两次求出单一量。小时生产 160 个零件,至少需要几台车床?这是反归一即求总 量里面包含几个单一量用除法。 【答案】【答案】 台机床小时生产零件多少个? 24016(个) 20 台这样的车床小时可以生产零件多少个? 20161280(个) 小时生产 160 个零件,至少需要几台车床? 16016(台) 答:20 台这样的车床小时可以生产零件 1280 个;小时生产 160 个零件需要台车床。 【归纳总结
6、】【归纳总结】 二次归一反归一问题,分两次求出单一量。再求总量里面包含几个单一量用除法。 【例】【例】 辆“黄河牌”卡车趟运走 336 吨沙土。现有沙土 560 吨,要求趟运完,求需要增加 同样的卡车多少辆? 【精析】【精析】 想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求趟运完 560 吨沙土,每 趟需多少辆卡车,应该知道一辆卡车一次能运多少吨沙土。 【答案】【答案】 一辆卡车一趟能运多少吨沙土? 33656(吨) 560 吨沙土,趟运完,每趟必须运走几吨? 560112(吨) 需要增加同样的卡车多少辆? 112(辆) 列综合算式:560(336)(辆) 答:需增加同样的卡车辆。
7、【归纳总结】【归纳总结】 二次归一反归一问题,分两次求出单一量。再求总量里面包含几个单一量用除法。 考点考点 3 3 归总问题归总问题 【例】【例】 修一条水渠,原计划每天修 800 米,天修完。实际天修完,每天修了多少米? 【精析】【精析】 因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问 题” 。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 【答案】【答案】 水渠长度多少米? 8004800(米) 天修完,每天修了多少米? 48001200(米) 答:每天修了 1200 米。 【归纳总结】【归纳总结】 归总问题先根据单一量,求出
8、总量,再根据其他条件求出其他结果。 名题精析名题精析 【例】【例】 (西安高新某中入学)现在互联网技术的广泛应用,催促了快递行业的高速发展,据调查, 西安市某家小型“大学生自主创业”的快递公司,今年三月份与四月份完成投递总件数分别是 10 万件和 11 万件,现假定该公司每月的快递总件数的增长率相同。 ()五月份完成投递的快递总件数是多少? ()如果平均每人每月最多可投递快递 0.6 万件,那么该公司现有的 21 名快递投递业务员能否完成 今年月份的快递投递任务?如果不能,请问至少需要增加几名业务员? 【精析】【精析】 本题信息量大,看起来是个分数应用题,其实也是一个归总问题。有三四月份算出增
9、长率, 进一步得到五月份和六月份的快递数量。最后根据题中单一量每人每月投递 0.6 万件,得出新总量在归一 问题得解。 【答案】【答案】 ()每月增长率为(1110)10 1 1011( 1 10)12.1(万件)综合:11 (1110)1012.1(万件) ()六月份的总快递数 12.1( 1 10)13.31(万件) 0.62112.6(万件)12.613.31 不能 0.60.62113.31(万件) 答:五月份完成投递的总件数是 12.1 万件,21 名快递投递业务员不能月份的快递投递任务,至少需 增加名业务员。 【归纳总结】【归纳总结】 归一归总问题包含范围比较广泛,本题从分数百分数
10、应用题也可出发。平均每人每月 最多可投递快递 0.6 万件为单一量,21 名快递投递业务员月份的快递投递任务为总量,再根据题中具体 条件就可解决。 毕业升学训练毕业升学训练 一、填空题一、填空题 学大教育天用纸 120 万张,照这样计算,两周用纸( )万张。 一个粮食加工厂台磨面机小时磨了 9000 千克。照这样计算,台磨面机小时磨面( ) 千克。 小王家养了头奶牛,天产牛奶 630 千克,照这样计算,头奶牛 15 天可产牛( )千克。 一辆汽车从甲地开往乙地, 每小时行 60 千米, 时到达。 若要时到达, 则每小时需要多行 ( ) 千米。 食堂运来一批蔬菜,原计划每天吃 50 千克,30
11、天慢慢消耗完这批蔬菜。后来根据大家的意见,每天比 原计划多吃 10 千克,这批蔬菜可以吃( )天。 二、解决问题 学校食堂天用粮 510 千克,照这样计算,天用粮多少千克?3570 千克的粮是否够用一个月? 王师傅赶制一批零件,小时加工了 165 个,照这样的速度,他再工作小时就可以完成全部任务, 王师傅加工的这批零件共有多少个? 小华每天读 24 页书,12 天读完了哈利波特一书。小明每天读 36 页书,几天可以读完哈利波 特? 某车间要加工一批零件,原计划由 18 人,每天工作小时,7.5 天完成任务,由于缩短工期,要求 天完成任务,可是又要增加人,求每天加班工作几小时? 一个长方体的水槽
12、可容水 480 吨,水槽装有一个进水管和一个排水管,单开进水管小时可以把空池 注满;单开排水管小时可把满池水排空。两管齐开需多少小时把满池水排空? 王红计划利用一周的时间看完一本 224 页的书,实际前天看了 99 页,照这样计算,她一周内能看完 吗? 冲刺名校提升冲刺名校提升 一、填空题一、填空题 (西安某工大附中分班)一款小排量轿车每百公里耗油升,另一款大排量轿车每百公里耗油 10 升, 两辆轿车同样行驶 30 千米的路程,小排量轿车比大排量轿车节省燃油( )升。 (西安某铁一中分班)一批布料,恰好可以做 36 件上衣或 60 条裤子,一件上衣和一条裤子配成一套, 则这批布料最多可以做(
13、)套衣服。 (西安某交大附中入学)一个底面半径为 10,高为 12的圆锥体铁块,可铸成完整的长方体长 为、宽为厘米、高为铁块最多( )块。 (宝鸡高新某中入学)某仓库调拨一批物资,调进物资共用 10 小时,调进物资小时后同时开始调出 物资(调进与调出的速度保持不变) ,该仓库库存物资(吨)与时间 t(小时)之间的关系如图所示,则 这批物资从开始调进到全部调出所需要的时间是( )小时。 二、判断题二、判断题 30这是一个归问题。 ) 归一问题分为二次归一和一次归一问题。 ) 正、反归一问题的相同点是:第一步先求出单一量;不同点第二步正归一是乘法反归一是除法。 ( ) 一件工作 16 人 20 天
14、可以完成,16 人工作天后,因工作需要调走了人,这样完成剩下的工作还需 要多少天?这不是归一问题。 ( 三、解决问题三、解决问题 花果山上桃树多,只小猴分得 180 棵,现有小猴 72 只,如平分后还余 90 棵,请算出桃树有几棵? (南昌某中入学)修一条公路,原计划 60 人工作,80 天完成。现在工作 20 天后,又增加了 30 人,这 样剩下的部分再用多少天可以完成? 甲、乙两个打字员小时共打字 3600 个,现在二人同时工作,在相同时间内,甲打字 2450 个,乙打 字 2050 个。求甲、乙二人每小时各打字多少个? (西安高新某中入学)福娃玩具厂今年从月 21 日起赶制一批玩具,要六
15、一儿童节前完成 3000 件玩具 送给福利院的小朋友过节,前三天平均每天生产了 250 件,余下的平均每天准备生产 375 件,请你算 一算他们能否按时完成生产任务? (西安某工大附中分班) “六一”儿童节学校要给小朋友发礼品,需要买 500 个相同的玩具。现在甲、 乙两家商店有售,单价均为 10 元,且质量相同,经过协商,两家商店都有优惠。如图所示,为了使费 用最少,请你通过计算帮助学校选择一家商店。 14.14.归一、归总问题归一、归总问题 毕业升学训练毕业升学训练 一、1.336 2.60000 3.2160 4.15 5.25 二、1.【解析】7 天用粮多少千克 51057=714(千
16、克) 3570 千克的粮是否够用一个月 3570(5105)=35(天) 3530 答:7 天用粮 714 克,3570 千克的粮,够用一个月。 2.【解析】1653(8+3)=605(个) 答:王师傅加工的这批零件共有 605 个。 3.【解析】241236=8(天) 答:小明 8 天可以读完哈利波特 4.【解析】原计划加工这批零件需要的“工时”:8187.5=1080(工时) 增加 6 人后每天工作几小时? 1080(18+6)4=11.25(小时) 每天加班工作几小时?11.25-8=3.25(小时) 答:每天要加班工作 3.25 小时。 5.【解析】进水速度:4808=60(吨/小时)
17、 排水速度:4806=80(吨/小时) 排空全池水所需的时间:480(80-60)=24(小时) 列综合算式:480(4806-4808)=24(小时) 答:两管齐开需 24 小时把满池水排空。 6.【解析】一天看多少页? 993=33(页) 她一周内能否看完吗? 337=231(页) 231224 答:她一周内能看完。 冲刺名校提升冲刺名校提升 一、1. 1.2 2. 22 3. 15 4. 11 二、1. 2. 3. 4. 三、1.【解析】方法一:180672+90=2250(棵) 方法二:180(726)+90=2250(棵) 答:桃树共有 2250 棵。 2.【解析】修这条公路共需要多
18、少个劳动日(总量)? 6080=4800(劳动日) 60 人工作 20 天后,还剩下多少劳动日? 4800-6020=3600(劳动日) 剩下的工程增加 30 人后还需多少天完成? 3600(60+30)=40(天) 综合算式:(6080-6020)(60+30)=40(天) 答:再用 40 天可以完成。 3.【解析】甲、乙二人每小时共打字多少个? 36004=900(个) “相同时间”是几小时? (2450+2050)900=5(小时) 甲打字员每小时打字的个数: 24505=490(个) 乙打字员每小时打字的个数: 20505=410(个) 答:甲打字员每小时打字 490 个,乙打字员每小
19、时打字 410 个。 4.【解析】前 3 天的总量 2503=750(件) 余下天数的任务量 (31-21+1-3)375=3000(件) 750+3000=3750(件) 37503000 5.【解析】甲商店总费用 因 500100 所以(500-100)100.9+10010=4600(元) 乙商店实际付费数量 500(10+1)=45(个)5(个) 4510+5=455(个) 乙商店总费用 45510=4550(元) 45504600 答:为了使费用最少,学校选择乙商店。 2.【解析】(1-20%)10%=8% 1810%=1.8(升) (18-1.8-3)50%-(20%+8%)=60
20、(升) 答:小明家的热水器共能装水 60 升。 冲刺名校提升 一、1. 2 2. 133 3. 25 4. 330 5. 120 6.172 7. 6.3 8.21500 h 9.1500 10. 20 11. 3 2 12. 116 31 4 13. 99 二、【解析】设艺术团总人数是 x 人 ( 12 7 x+ 12 7 x+40) 5 4 =x ( 12 14 x+40) 5 4 =x 12 14 x+32=x x=480 答:艺术团总人数是 480 人。 3.【解析】240(1-60%)=96(人) 96(1-62.5%)=256(人) 答:现在这个工厂有 256 名工人。 4.【解析
21、】设每包有 x 本,则 (22x+30) 7 4 =(22+18) X=35 35(22+18)=1400(本) 答:这批书共有 1400 本。 5.【解析】25%40%+(1-25%)(1-32%)=61% 答:现在健康的人数占全部人口的 61% 6.【解析】设剩下黄球 x 个,那么剩下红球 3x 个 3x(1- 4 1 )+x+5=125 x=24 24+5=29(个) 125-29=96(个) 答:红球原来有 96 个,黄球原来有 29 个。 7.【解析】200 7 2 =700(棵) 70040%=280(棵) 700-280=420(棵) 420 7 3 =180(棵) 答:丙班植树 180 棵。