ImageVerifierCode 换一换
格式:DOCX , 页数:40 ,大小:508.54KB ,
资源ID:184997      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-184997.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021年中考数学分类专题突破专题21 四边形中的存在性问题(解析版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2021年中考数学分类专题突破专题21 四边形中的存在性问题(解析版)

1、专题专题 2121 四边形中的存在性问题四边形中的存在性问题 1、已知,在 ABC 中,BAC90 ,ABC45 ,点 D 为直线 BC 上一动点(点 D 不与点 B、C 重合), 以 AD 为边做正方形 ADEF,连接 CF (1)如图,当点 D 在线段 BC 上时,直接写出线段 CF、BC、CD 之间的数量关系 (2)如图,当点 D 在线段 BC 的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还 成立吗?如成立,请予以证明,如不成立,请说明理由; (3)如图,当点 D 在线段 BC 的反向延长线上时,且点 A、F 分别在直线 BC 两侧,其他条件不变; 若正方形 ADEF 的

2、边长为 4,对角线 AE、DF 相交于点 O,连接 OC,请直接写出 OC 的长度 解:(1)BAC90 ,ABC45 , ACBABC45 , ABAC, 四边形 ADEF 是正方形, ADAF,DAF90 , BAD90 DAC,CAF90 DAC, BADCAF, 在 BAD 和 CAF 中, , BADCAF(SAS), BDCF, BD+CDBC, CF+CDBC; 故答案为:CF+CDBC; (2)CF+CDBC 不成立,存在 CFCDBC; 理由:BAC90 ,ABC45 , ACBABC45 , ABAC, 四边形 ADEF 是正方形, ADAF,DAF90 , BAD90 D

3、AC,CAF90 DAC, BADCAF, 在 BAD 和 CAF 中, , BADCAF(SAS) BDCF BC+CDCF, CFCDBC; (3)BAC90 ,ABC45 , ACBABC45 , ABAC, 四边形 ADEF 是正方形, ADAF,DAF90 , BAD90 BAF,CAF90 BAF, BADCAF, 在 BAD 和 CAF 中, , BADCAF(SAS), ACFABD, ABC45 , ABD135 , ACFABD135 , FCD135 45 90 , FCD 是直角三角形 正方形 ADEF 的边长 4 且对角线 AE、DF 相交于点 O DFAD4,O 为

4、 DF 中点 Rt CDF 中,OCDF 2、如图 1,已知正方形 ABCD,E 是线段 BC 上一点,N 是线段 BC 延长线上一点,以 AE 为边在直线 BC 的上方作正方形 AEFG (1)连接 GD,求证 DGBE; (2)连接 FC,求 tanFCN 的值; (3)如图 2,将图 1 中正方形 ABCD 改为矩形 ABCD,AB3,BC8,E 是线段 BC 上一动点(不含端 点 B,C),以 AE 为边在直线 BC 的上方作矩形 AEFG,使顶点 G 恰好落在射线 CD 上当点 E 由 B 向 C 运动时,判断 tanFCN 的值是否为定值?若是,求出该定值;若不是,请说明理由 解:

5、(1)如图 1, 正方形 ABCD 和正方形 AEFG 中, BADEAG90 ,ABAD,AEAG, BAEGAD, BAEGAD(SAS), DGBE; (2)如图 2,过点 F 作 FMBN 于 M,则BAEFFME90 , BAE+AEBFEM+AEB90 , 即BAEFEM, 又 AEEF, BAEMEF(ASA), FMBE,EMAB, 又 BE+ECAB,EMEC+CM, CMFM, 在 Rt FCM 中,tanFCN1; (3)如图 2,过点 F 作 FMBN 于 M,则BAEFFME90 , BAE+AEBFEM+AEB90 , 即BAEFEM, 同理可证GADFEM, 又

6、AGEF, DAGMEF, BAEMEF, EMADBC8, 设 BEa,则 EMEC+CMBCBE+EC, CMBEa, , FM , tanFCN,即 tanFCN 的值为定值 3、 如图, 在平面直角坐标系 xOy 中, 矩形 ABCD 的边 AB4, BC6 若不改变矩形 ABCD 的形状和大小, 当矩形顶点A在x轴的正半轴上左右移动时, 矩形的另一个顶点D始终在y轴的正半轴上随之上下移动 (1)当OAD30 时,求点 C 的坐标; (2)设 AD 的中点为 M,连接 OM、MC,当四边形 OMCD 的面积为时,求 OA 的长; (3)当点 A 移动到某一位置时,点 C 到点 O 的距

7、离有最大值?若存在,求此时的值;若不存在,请 说明理由 解:(1)如图 1,过点 C 作 CEy 轴于点 E, 矩形 ABCD 中,CDAD, CDE+ADO90 , 又OAD+ADO90 , CDEOAD30 , 在 Rt CED 中,CECD2,DE2, 在 Rt OAD 中,OAD30 , ODAD3, 点 C 的坐标为(2,3+2); (2)M 为 AD 的中点, DM3,S DCM6, 又 S四边形OMCD , S ODM, S OAD9, 设 OAx、ODy,则 x2+y236,xy9, x2+y22xy,即 xy, 将 xy 代入 x2+y236 得 x218, 解得 x3(负值

8、舍去), OA3; (3)OC 的最大值为 8, 如图 2,M 为 AD 的中点, OM3,CM5, OCOM+CM8, 当 O、M、C 三点在同一直线时,OC 有最大值 8, 连接 OC,则此时 OC 与 AD 的交点为 M,过点 O 作 ONAD,垂足为 N, CDMONM90 ,CMDOMN, CMDOMN, ,即, 解得 MN,ON, ANAMMN, 在 Rt OAN 中,OA, cosOAD 即 4、如图,将 ABCD 的边 AB 延长到点 E,使 BEAB,连接 DE,交 BC 边于点 F (1)求证: BEFCDF; (2) 连接 BD、 CE, 请探究: 当BFD 与A 之间满

9、足怎样的数量关系时, 能使四边形 BECD 成为矩形? 为什么? (1)证明:四边形 ABCD 是平行四边形, ABCD,ABCD BEAB, BECD ABCD, BEFCDF,EBFDCF, 在 BEF 与 CDF 中, , BEFCDF(ASA); (2)解:BFD2A 时,四边形 BECD 成为矩形 证明:四边形 ABCD 是平行四边形, ABCD,ABCD,ADCB, ABBE, CDEB, 四边形 BECD 是平行四边形, BFCF,EFDF, BFD2A, BFD2DCF, DCFFDC, DFCF, DEBC, 四边形 BECD 是矩形 5、如图,在 ABC 中,ABAC,AD

10、 是 BC 边上的中线,点 E 是 AD 边上一点,过点 B 作 BFEC,交 AD 的延长线于点 F,连接 BE,CF (1)求证: BDFCDE (2)若 DEBC,求证:四边形 BECF 是正方形 (1)证明:AD 是 BC 边上的中线,ABAC, BDCD, BFEC, DBFDCE, BDFCDE, BDFCDE(ASA); (2)证明:BDFCDE, BFCE,DEDF, BFCE, 四边形 BECF 是平行四边形, ABAC,AD 是中线, 四边形 BECF 是菱形, DEBC,DEDF EF, EFBC, 四边形 BECF 是正方形 6、在平面直角坐标系中,点 O 为坐标原点,

11、点 A(5,0)在 x 轴的正半轴上,四边形 OABC 为平行四边形, 对角线 OBOA,BC 交 y 轴于点 D,且 S OABC20 (1)如图,求点 B 的坐标: (2)如图,点 P 在线段 OD 上,设点 P 的纵坐标为 t, PAB 的面积为 S,请用含 t 的式子表示 S; (3)在(2)的条件下,如图,点 Q 在 x 轴上,点 R 为坐标平面内一点,若OCBCBP45 ,且 四边形 PQBR 为菱形,求 t 的值并直接写出点 Q 的坐标 解:(1)点 A(5,0),OBOA, OAOB5, S OABCOA OD5OD20, OD4, 四边形 OABC 为平行四边形, BCAO,

12、BCAO5, BDO90 , DB 3, 点 B(3,4); (2)点 P 的纵坐标为 t, OPt, DP4t, S (3+5) 4 3 (4t) 5 tt+10; (3)如图, 由(1)知,B(3,4),OA5,BCOA, C(2,4), CD2 取 OD 的中点 E,则 DEOD2, DECD, DCE45 , OCBOCE45 , OCBCBP45 , OCECBP, 过点 E 作 EFOC 于 F, CFE90 BDP, CFEBDP, , 在 Rt CDE 中,CDDE2, CE2, 在 Rt ODC 中,CD2,OD4, OC2, CE 是 OCD 的中线, S OCES CDO

13、 2 42 S OCEOCEFEF2, EF , 在 Rt CFE 中,根据勾股定理得,CF, , DP1, OPODDP3, t3, P(0,3), 设 Q(m,0), B(3,4), PQ2m2+9,BQ2(m3)2+16, 四边形 PQBR 为菱形, PQBQ, m2+9(m3)2+16, m , 即 Q(,0) 7、已知在四边形 ABCD 中,ADBC,ABBC,AD2,AB4,BC6 (1)如图 1,P 为 AB 边上一点,以 PD,PC 为边作平行四边形 PCQD,过点 Q 作 QHBC,交 BC 的 延长线于 H求证: ADPHCQ; (2)若 P 为 AB 边上任意一点,延长

14、PD 到 E,使 DEPD,再以 PE,PC 为边作平行四边形 PCQE请 问对角线 PQ 的长是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由 (3)如图 2,若 P 为 DC 边上任意一点,延长 PA 到 E,使 AEnPA(n 为常数),以 PE,PB 为边作 平行四边形 PBQE请探究对角线 PQ 的长是否也存在最小值?如果存在,请求出最小值;如果不存在, 请说明理由 解:(1)ADBC, ADCDCH, ADP+PDCDCQ+QCH, 四边形 PCQD 是平行四边形, PDCQ,PDCQ, PDCDCQ, ADPQCH, 在 ADP 和 HCQ 中, , ADPHCQ(

15、AAS); (2)存在最小值,最小值为 10, 如图 1,作 QHBC,交 BC 的延长线于 H,设 PQ 与 DC 相交于点 G, PECQ, DPGCQG, , 由(1)可知,ADPQCH, Rt ADPRt QCH, , CH2AD4, BHBC+CH6+410, 当 PQAB 时,PQ 的长最小,即为 10; (3)存在最小值,最小值为( n+4 ), 如图 2,作 QHDC,交 CB 的延长线于 H,作 CKCD,交 QH 的延长线于 K, PEBQ,AEnPA, , ADBC, ADP+DCH90 , CDQK, QHC+DCH180 , QHCADQ, PAD+PAGQBH+QB

16、G90 ,PAGQBG, PADQBH, ADPBHQ, , BH2n+2, CHBC+BH6+2n+22n+8, 过点 D 作 DMBC 于 M,又DABABM90 , 四边形 ABMD 是矩形, BMAD2,DMAB4, MCBCBM624DM, DCM45 , HCK45 , CKCHcos45 ( 2n+8 )( n+4 ), 当 PQCD 时,PQ 的长最小,最小值为( n+4 ) 8、已知:如图,在 Rt ABC 中,ACB90 ,BC8,AB10,点 P,E,F 分别是 AB,AC,BC 上的 动点,且 AP2CE2BF,连结 PE,PF,以 PE,PF 为邻边作平行四边形 PF

17、QE (1)当点 P 是 AB 的中点时,试求线段 PF 的长 (2)在运动过程中,设 CEm,若平行四边形 PFQE 的面积恰好被线段 BC 或射线 AC 分成 1:3 的两 部分,试求 m 的值 (3)如图,设直找 FQ 与直线 AC 交于点 N,在运动过程中,以点 Q,N,E 为顶点的三角形能否构成 直角三角形?若能,请直接写出符合要求的 CE 的长;若不能,请说明理由 解:(1)如图,作 PHBC 于点 H, ACB90 ,BC8,AB10, AC6 AP2CE2BF, 点 P 是 AB 的中点, PAPB5 CEBF,PH3,BHCH4, FH PF (2)如图,平行四边形 PFQE

18、 的面积恰好被线段 BC 分成 1:3 的两部分时,则 EMPF PHBC, PHF90 ACB, PHAC, CEMHPF, PBHABC, PH2CE2m, , m 如图,平行四边形 PFQE 的面积恰好被线段 AC 分成 1:3 的两部分时,则 FDQD,QNPG, CFPG APGABC, , m m 的值为或 (3)如图,当QNE90 时,则点 N 与点 C 重合,设 CEx, PBHABC, , , x 如图,当QNE90 时,则点 P 与点 B 重合, 则 2x10, x5 如图,当QNE90 时, FPRPES, , , x 经检验,x 值符合题意 综上,CE 的长为或 5 或

19、 9、如图,长方形 ABCD 在平面直角坐标系中,ADBCx 轴,ABDCy 轴,x 轴与 y 轴夹角为 90 ,点 M,N 分别在 xy 轴上,点 A(1,8),B(1,6),C(7,6),D(7,8) (1)连接线段 OB、OD、BD,求 OBD 的面积; (2)若长方形 ABCD 在第一象限内以每秒 0.5 个单位长度的速度向下平移,经过多少秒时, OBD 的 面积与长方形 ABCD 的面积相等请直接写出答案; (3)见备用图,连接 OB,OD,OD 交 BC 于点 E,BON 的平分线和BEO 的平分线交于点 F 当BEO 的度数为 n,BON 的度数为 m 时,求OFE 的度数 请直

20、接写出OFE 和BOE 之间的数量关系 解:(1)如图 1,延长 DA 交 y 轴于 H,如图 1 所示: 则 AHy 轴 A(1,8),B(1,6),C(7,6),D(7,8) OH8,DH7,AH1,AD6,AB2, S OBDS ODHS ABDS梯形AHOB OH DH AB AD (AB+OH) AH 8 7 26 (2+8) 117; (2)S长方形ABCD2 612, S OBDS ODHS ABDS梯形AHOB12, (80.5t) 7 2 6 (2+80.5t) 112, t ; (3)如图 2,延长 CB 交 y 轴于 P,延长 EF 交 y 轴于点 G, EF 平分BEO

21、,OF 平分NOB, GOFNOBm,BEF BEOn, EFOGOF+FGO,FGOGPE+BEF, EFOGOF+GPE+BEFm+n+90 ; EF 平分BEO,OF 平分NOB, GOFNOB,BEF BEO, EFOGOF+FGO,FGOGPE+BEF, EFOGOF+GPE+BEF90 +NOB+BEO, BOE90 BONBEO, 2EFO+BOE270 10、将一个矩形纸片 OABC 放置在平面直角坐标系中,点 O(0,0),点 A(8,0),点 C(0,6)P 是 边 OC 上的一点(点 P 不与点 O,C 重合),沿着 AP 折叠该纸片,得点 O 的对应点 O ()如图,当

22、点 O落在边 BC 上时,求点 O的坐标; ()若点 O落在边 BC 的上方,OP,OA 与分别与边 BC 交于点 D,E 如图,当OAP30 时,求点 D 的坐标; 当 CDOD 时,求点 D 的坐标(直接写出结果即可) 解:()点 A(8,0),点 C(0,6),OABC 为矩形, ABOC6,OACB8,B90 根据题意,由折叠可知 AOPAOP, OAOA8 在 Rt AOB 中,BO2 COBCBO82 点 O的坐标为(82,6) ()OAP30 , OPA60 , OPAOPA, CPD180 OPAOPA60 OA8, OPOAtan30 CP6OP6 CDCPtan6068 点

23、 D 的坐标为(68,6) 连接 AD,如图: 设 CDx,则 BDBCCD8x,ODCDx, 根据折叠可知 AOAO8,POAPOA90 , 在 Rt ADO中,AD2AO2+DO282+x2x2+64; 在 Rt ABD 中,AD2BD2+AB2(8x)2+62x216x+100; x2+64x216x+100, 解得:x, CD , D(,6) 11、在等腰梯形 ABCD 中,ADBC,ABDC5,AD6,BC12 (1)梯形 ABCD 的面积等于 (2)如图 1,动点 P 从 D 点出发沿 DC 以每秒 1 个单位的速度向终点 C 运动,动点 Q 从 C 点出发沿 CB 以每秒 2 个

24、单位的速度向 B 点运动 两点同时出发, 当 P 点到达 C 点时, Q 点随之停止运动 当 PQAB 时,P 点离开 D 点多少时间? (3)如图 2,点 K 是线段 AD 上的点,M、 N 为边 BC 上的点, BMCN5, 连接 AN、DM,分别交 BK、 CK 于点 E、F,记 ADG 和 BKC 重叠部分的面积为 S,求 S 的最大值 解:(1)如图 1,作 AEBC 于 E,DFBC 于 F,则 AEDF, ADBC,AEBC, 四边形 ADFE 是矩形, AEDF,ADEF6, 在 Rt ABE 和 Rt DCF 中, , Rt ABERt DCF(HL), BECF, BECF

25、3, 由勾股定理得,AE4, 梯形 ABCD 的面积 (AD+BC) AE (12+6) 436, 故答案为:36; (2)如图 3,过 D 作 DEAB,交 BC 于点 E, ADBC,DEAB, 四边形 ABED 为平行四边形, BEAD6, EC6, 当 PQAB 时,PQDE, CQP CED, ,即, 解得,t; (3) 如图 2, 过 G 作 GHBC, 延长 HG 交 AD 于 I, 过 E 作 EXBC, 延长 XE 交 AD 于 Y, 过 F 作 FUBC 于 U,延长 UF 交 AD 于 W, BMCN5, MN12552, BNCM7, MNAD, MGN DGA, ,即

26、, 解得,HG1, 设 AKx, ADBC, BEN KEA, ,即, 解得,EX, 同理:FU, SS BKCS BENS CFM+S MNG 12 4 7 7+ 2 1 , 当 x3 时,S 的最大值为 255.4 12、【探索规律】 如图,在 ABC 中,点 D,E,F 分别在 AB,BC,AC 上,且 DFBC,EFAB设 ADF 的边 DF 上的高为 h1, EFC 的边 CE 上的高为 h2 (1)若 ADF、 EFC 的面积分别为 3,1,则 ; (2)设 ADF、 EFC、四边形 BDFE 的面积分别为 S1,S2,S,求证:S2; 【解决问题】 (3)如图,在 ABC 中,点

27、 D,E 分别在 AB,AC 上,点 F,G 在 BC 上,且 DEBC,DFBG若 ADE、 DBF、 EGC 的面积分别为 3,7,5,求 ABC 的面积 解:(1)DFBC,EFAB, AFDACB,DAFEFC, ADFFEC, ADF、 EFC 的面积分别为 3,1, , , ADF 的边 DF 上的高为 h1, EFC 的边 CE 上的高为 h2, ; 故答案为: (2)证明:如图,设 ADa,BDb,DB 与 EF 间的距离为 h, EFAB,DFBC, 四边形 DBFE 是平行四边形, BDEFb, 由(1)知 ADFFEC, , S1ah, S2, S1S2, bh2, Sb

28、h, S2 (3)如图,过点 D 作 DMAC 交 BC 于点 M, DMFECG, DEBC,DFBG, 四边形 DFGE 为平行四边形, DFEG,DFMEGC, DFMEGC(AAS), S DFMS EGC5, S DBF7, S BDM7+512, DEBM,DMAC, ADEDBM,BDMBAE, DAEBDM, , , , 同理, ADEABC, S ABC9S ADE9 327 13、已知:如图,在四边形 ABCD 中,ABCD,ABC90 ,ABAD10cm,CD4cm点 P 从点 A 出发,沿 AB 方向匀速运动,速度为 2cm/s;同时点 Q 从点 C 出发,沿 DC 方

29、向在 DC 的延长线上匀速运 动,速度为 1cm/s;当点 P 到达点 B 时,点 Q 停止运动过点 P 作 PEBD,交 AD 于点 E连接 EQ, BQ设运动时间为 t(s)(0t5),解答下列问题: (1)连接 PQ,当 t 为何值时,PQAD? (2)设四边形 PBQE 的面积为 y(cm2),求 y 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t,使四边形 PBQE 的面积为四边形 ABQD 面积的,若存在, 求出 t 的值;若不存在,请说明理由; (4)在运动过程中,是否存在某一时刻 t,使 EQBD?若存在,求出 t 的值;若不存在,请说明理由 解:(1)当 P

30、QAD 时,DCAB, 四边形 APQD 是平行四边形, APDQ,即 2t4+t, 解得,t4, 当 t 为 4s 时,PQAD; (2)过点 D 作 DFAB 于 F,过点 E 作 EMAB 于 M,延长 ME 交 CD 的延长线于点 N, DFADFB90 ,EMAEMB90 , ABCD, CDF90 ,CNM90 , ABC90 , 四边形 DFBC、NMFD 是矩形, BFDC4, AF6, DF8, MNBCDF8, PEBD, , ABAD, AEAP2t, AA,EMADFA, AEMADF, ,即, , , yS四边形PBQES梯形ABQDS AEPS QED t2+t+4

31、0, y 与的函数关系式为:yt2+t+40(0t5); (3)假设存在某一时刻 t,四边形 PBQE 的面积为四边形 ABQD 面积的, 则t2+t+40 (4+t+10) 8, 解得,t14,t2 (不合题意,舍去), 答:当 t4 时,四边形 PBQE 的面积为四边形 ABQD 面积的; (4)若存在某一时刻 t,使 EQBD,垂足为 O, DOEDOQ90 , ABCD, BDCDBA, ABAD, BDADBA, BDCBDA, DEDQ, 4+t102t, t2, 当 t 为 2s 时,EQBD 14、已知菱形 ABCD 中,AB4,BAD120 ,点 P 是直线 AB 上任意一点

32、,连接 PC,在PCD 内部作 射线 CQ 与对角线 BD 交于点 Q(与 B、D 不重合),且PCQ30 (1)如图,当点 P 在边 AB 上,且 BP3 时,求 PC 的长; (2)当点 P 在射线 BA 上,且 BPn(0n8)时,求 QC 的长;(用含 n 的式子表示) (3)连接 PQ,直线 PQ 与直线 BC 相交于点 E,如果 QCE 与 BCP 相似,请直接写出线段 BP 的长 解:(1)如图 1 中,作 PHBC 于 H 四边形 ABCD 是菱形, ABBC4,ADBC, A+ABC180 , A120 , PBH60 , PB3,PHB90 , BHPBcos60,PHPB

33、sin60, CHBCBH4, PC (2)如图 1 中,作 PHBC 于 H,连接 PQ,设 PC 交 BD 于 O 四边形 ABCD 是菱形, ABDCBD30 , PCQ30 , PBOQCO, POBQOC, POBQOC, , , POQBOC, POQBOC, OPQOBC30 PCQ, PQQC, PCQC, 在 Rt PHB 中,BPn, BHn,PH n, PC2PH2+CH2, 3QC2(n)2+(4n)2, QC(0n8) (3)如图 2 中,若直线 QP 交直线 BC 于 B 点左侧的点 E 此时CQE120 , PBC60 , PBC 中,不存在角与CQE 相等, 此时 QCE 与 BCP 不可能相似 如图 3 中,若直线 QP 交直线 BC 于点 C 右侧的点 E 则CQEBQBC+QCP60 CBP, PCBE, 只可能BCPQCE75 , 作 CFAB 于 F,则 BF2,CF2,PCF45 , PFCF2, 此时 BP2+2, 如图 4 中,当点 P 在 AB 的延长线上时, CBE 与 CBP 相似, CQECBP120 , QCECBP15 , 作 CFAB 于 F FCB30 , FCB45 , BFBC2,CFPF2 , BP22 综上所述,满足条件的 BP 的值为 2+2或 22