ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:374.49KB ,
资源ID:184510      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-184510.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021年安徽省合肥市庐阳区中考数学二模试卷(含答案详解))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2021年安徽省合肥市庐阳区中考数学二模试卷(含答案详解)

1、2021 年安徽省合肥市庐阳区中考数学二模试卷年安徽省合肥市庐阳区中考数学二模试卷 一、选择题(本大题一、选择题(本大题 10 小题,每小题小题,每小题 4 分,满分分,满分 40 分)分) 1 (4 分)2021 的相反数是( ) A2021 B C D2021 2 (4 分)下列运算一定正确的是( ) Aa2+a2a4 Ba2a4a8 C (a2)4a8 D (a+b)2a2+b2 3 (4 分)芝麻被称为“八谷之冠” ,是世界上最古老的油料作物之一,它作为食物和药物,得到广泛的使 用经测算,一粒芝麻的质量约为 0.00000201kg,将 0.00000201 用科学记数法表示为( )

2、A2.0110 8 B0.20110 7 C2.0110 6 D20.110 5 4 (4 分)如图摆放的几何体中,主视图与左视图有可能不同的是( ) A B C D 5 (4 分)用配方法解一元二次方程 2x23x10,配方正确的是( ) A (x)2 B (x)2 C (x)2 D (x)2 6 (4 分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的 20 名学生的读书册数进行调查,结果如右表: 根据统计表中的数据,这 20 名同学读书册数的众数,中位数分别是( ) 册数/册 1 2 3 4 5 人数/人 2 5 7 4 2 A3,3 B3,7 C2,

3、7 D7,3 7 (4 分)如图,A,B 是双曲线 y上的两个点,过点 A 作 ACx 轴,交 OB 于点 D,垂足为点 C若 ODC 的面积为 1,D 为 OB 的中点,则 k 的值为( ) A B2 C4 D8 8 (4 分)如图,在菱形 ABCD 中,AB5,AC6,过点 D 作 DEBA,交 BA 的延长线于点 E,则线段 DE 的长为( ) A B C4 D 9(4 分) 如图, AB 为O 的直径, C, D 是圆周上的两点, 若ABC38, 则锐角BDC 的度数为 ( ) A57 B52 C38 D26 10 (4 分)如图,矩形纸片 ABCD 中,AB3,BC5,点 E、G 分

4、别在 AD、DC 上,将ABE、EDG 分别沿 BE、EG 翻折,点 A 的对称点为点 F,点 D 的对称点为点 H,当 E、F、H、C 四点在同一直线上 时,连接 DH,则线段 DH 长为( ) A B C D 二、填空题(本大题二、填空题(本大题 4 小题,每小题小题,每小题 5 分,满分分,满分 20 分)分) 11 (5 分)如果二次根式有意义,那么 x 的取值范围是 12 (5 分)分解因式:xy24x 13 (5 分)在正方形网格中,A、B、C、D 均为格点,则BACDAE 14 (5 分)已知函数 yx2+x+4 与 y 轴交于点 C,顶点为 D,直线 CD 交 x 轴于点 E,

5、点 F 在直线 CD 上,且横坐标为 4,现在,将抛物线沿其对称轴上下平移,使抛物线与线段 EF 总有公共点,抛物线向上 最多可以平移 个单位长度,向下最多可以平移 个单位长度 三、 (本大题三、 (本大题 2 小题,每小题小题,每小题 8 分,满分分,满分 16 分)分) 15 (8 分)解不等式组: 16 (8 分) 目前, 以 5G 为代表的战略性新兴产业蓬勃发展, 某市 2019 年底有 5G 用户 2 万户, 计划到 2021 年底 5G 用户数累计达到 9.68 万户,求这两年全市 5G 用户数的年平均增长率 四、 (本大题四、 (本大题 2 小题,每小题小题,每小题 8 分,满分

6、分,满分 16 分)分) 17 (8 分)如图,在平面直角坐标系中,已知点 A(1,0) 、B(3,4) 、和 C(2,4) 、D(6,6) ,请 按下列要画图并填空: (1)沿水平方向移动线段 AB,使点 A 和点 C 的横坐标相同,画出平移后所得的线段 A1B1,并写出点 B1的坐标; (2)将线段 A1B1绕着某一点旋转一定角度,使其与线段 CD 重合(点 A1与点 C 重合,点 B1与点 D 重 合) ,请用无刻度的直尺和圆规,找出旋转中心点 P (保留作图痕迹,不写作法) 18 (8 分)阅读下面内容,并将问题解决过程补充完整: 1; ; 由此,我们可以解决下面问题:S1+,请求出

7、S 的整数部分 解:S1+ +1+2(1+)19; S1+ S 的整数部分是 五、 (本大题五、 (本大题 2 小题,每小题小题,每小题 10 分,满分分,满分 20 分)分) 19 (10 分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一 某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度如图所示,他们在地面一条水平步 道 MP 上架设测角仪,先在点 M 处测得观星台最高点 A 的仰角为 22,然后沿 MP 方向前进 16m 到达 点 N 处,测得点 A 的仰角为 45测角仪的高度为 1.6m 求观星台最高点 A 距离地面的高度(结果精确 到 0.1

8、m参考数据:sin220.37,cos220.93,tan220.40,1.41) 20 (10 分)如图,点 B 为O 外一点,过点 B 作O 的切线,切点为 A,点 P 为 OB 上一点,连接 AP 并 延长交O 于点 C,连接 OC,若 OCOB (1)求证:BPAB; (2)若 OB10,O 的半径为 8,求 AP 的长 六、 (本大题满分六、 (本大题满分 12 分)分) 21 (12 分)某学校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理, 并分别绘制成扇形统计图和频数分布直方图部分信息如下: (1)本次比赛参赛选手共有 ,扇形统计图中“79.589.

9、5“这一范围的人数占总参赛人数的百 分比为 ; (2)补全图 2 频数分布直方图; (3)成绩前四名是 2 名男生和 2 名女生,若从他们中任选 2 人作为该校文艺晚会的主持人,请用列举法 (画树状图或列表)求所选取的这两名学生恰好是一男一女的概率 七、 (本大题满分七、 (本大题满分 12 分)分) 22 (12 分) 某商店经过市场调查, 整理出某种商品在第 x (1x90) 天的售价与销量的相关信息如下表: 时间 x(天) 1x50 50 x90 售价(元/件) x+40 90 每天销量(件) 2002x 已知该商品的进价为每件 30 元,设销售该商品的每天利润为 y 元 (1)求出 y

10、 与 x 的函数关系式; (2)问销售该商品第几天时,当天销售利润最大,最大利润是多少? 八、 (本大题满分八、 (本大题满分 14 分)分) 23 (14 分)如图,在正方形 ABCD 中,E、F 分别是 AD、CD 上的点,且 AECF,连接 BE、BF、EF, 点 G 是 BE 的中点,连接 AG 并延长交 BF 于点 K (1)求证:AKBF; (2)当点 E 是 AD 的中点时,求 tanEBF 的值; (3)连接 CK,当线段 CK 取最小值时,求的值 2021 年安徽省合肥市庐阳区中考数学二模试卷年安徽省合肥市庐阳区中考数学二模试卷 参考答案与试题解析参考答案与试题解析 一、选择

11、题(本大题一、选择题(本大题 10 小题,每小题小题,每小题 4 分,满分分,满分 40 分)分) 1 (4 分)2021 的相反数是( ) A2021 B C D2021 【解答】解:2021 的相反数是:2021 故选:D 2 (4 分)下列运算一定正确的是( ) Aa2+a2a4 Ba2a4a8 C (a2)4a8 D (a+b)2a2+b2 【解答】解:A、a2+a22a2,原计算错误,故此选项不合题意; B、a2a4a6,原计算错误,故此选项不合题意; C、 (a2)4a8,原计算正确,故此选项合题意; D、 (a+b)2a2+2ab+b2,原计算错误,故此选项不合题意 故选:C 3

12、 (4 分)芝麻被称为“八谷之冠” ,是世界上最古老的油料作物之一,它作为食物和药物,得到广泛的使 用经测算,一粒芝麻的质量约为 0.00000201kg,将 0.00000201 用科学记数法表示为( ) A2.0110 8 B0.20110 7 C2.0110 6 D20.110 5 【解答】解:0.000002012.0110 6 故选:C 4 (4 分)如图摆放的几何体中,主视图与左视图有可能不同的是( ) A B C D 【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意; B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意; C、主视图和左视图都是圆,一定

13、相同,故选项不符合题意; D、主视图是长方形,左视图是可能是正方形,也可能是长方形,故本选项符合题意; 故选:D 5 (4 分)用配方法解一元二次方程 2x23x10,配方正确的是( ) A (x)2 B (x)2 C (x)2 D (x)2 【解答】解:由原方程,得 x2x, x2x+, (x)2, 故选:A 6 (4 分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的 20 名学生的读书册数进行调查,结果如右表: 根据统计表中的数据,这 20 名同学读书册数的众数,中位数分别是( ) 册数/册 1 2 3 4 5 人数/人 2 5 7 4 2 A3,3

14、B3,7 C2,7 D7,3 【解答】解:因为共有 20 个数据, 所以中位数为第 10、11 个数据的平均数,即中位数为3, 由表格知数据 3 出现了 7 次,次数最多,所以众数为 3 故选:A 7 (4 分)如图,A,B 是双曲线 y上的两个点,过点 A 作 ACx 轴,交 OB 于点 D,垂足为点 C若 ODC 的面积为 1,D 为 OB 的中点,则 k 的值为( ) A B2 C4 D8 【解答】解:过点 B 作 BEx 轴于点 E,则 SBOEk D 为 OB 的中点,CDBE, CD 是OBE 的中位线,CDBE, ODCOBE, ()2, SODCSBOEk1, k8 故选:D

15、8 (4 分)如图,在菱形 ABCD 中,AB5,AC6,过点 D 作 DEBA,交 BA 的延长线于点 E,则线段 DE 的长为( ) A B C4 D 【解答】解:如图 四边形 ABCD 是菱形,AC6, ACBD,OAAC3,BD2OB, AB5, OB4, BD2OB8, S菱形ABCDABDEACBD, DE 故选:D 9(4 分) 如图, AB 为O 的直径, C, D 是圆周上的两点, 若ABC38, 则锐角BDC 的度数为 ( ) A57 B52 C38 D26 【解答】解:连接 AC, AB 是O 的直径, ACB90, ABC38, BAC90ABC52, BDCBAC52

16、 故选:B 10 (4 分)如图,矩形纸片 ABCD 中,AB3,BC5,点 E、G 分别在 AD、DC 上,将ABE、EDG 分别沿 BE、EG 翻折,点 A 的对称点为点 F,点 D 的对称点为点 H,当 E、F、H、C 四点在同一直线上 时,连接 DH,则线段 DH 长为( ) A B C D 【解答】解:由翻折可知: ABBF3,BFC90, 勾股定理得:FC4, 在BFC 和CDE 中, , BFCCDE(ASA) , FCED4,ECBC5, EHDE4(翻折) ,HCECEH1, 过点 H 作 HMDC 于点 M,则 HMAD, HMCEDC, , 解得:MC,HM, 则 DM,

17、 在 RtDHM 中, DH, 故选:A 二、填空题(本大题二、填空题(本大题 4 小题,每小题小题,每小题 5 分,满分分,满分 20 分)分) 11 (5 分)如果二次根式有意义,那么 x 的取值范围是 x4 【解答】解:由题意得,x+40, 解得,x4, 故答案为:x4 12 (5 分)分解因式:xy24x x(y+2) (y2) 【解答】解:原式x(y24)x(y+2) (y2) , 故答案为:x(y+2) (y2) 13 (5 分)在正方形网格中,A、B、C、D 均为格点,则BACDAE 45 【解答】解:如图所示,把ADE 移到CFG 处,连接 AG, 此时DAEFCG, CFBD

18、, BACFCA, BACDAEFCAFCGACG, 设小正方形的边长是 1, 由勾股定理得:CG212+3210,AC2AG212+225, AC2+AG2CG2,ACAG, CAG90, 即ACG 是等腰直角三角形, ACG45, BACDAE45, 故答案为:45 14 (5 分)已知函数 yx2+x+4 与 y 轴交于点 C,顶点为 D,直线 CD 交 x 轴于点 E,点 F 在直线 CD 上,且横坐标为 4,现在,将抛物线沿其对称轴上下平移,使抛物线与线段 EF 总有公共点,抛物线向上 最多可以平移 36 个单位长度,向下最多可以平移 个单位长度 【解答】解:对于 yx2+x+4,令

19、 x0,则 y4, 故点 C 的坐标为(0,4) , 而 yx2+x+4(x1)2+, 顶点 D 的坐标为(1,) , 设直线 CD 解析式为 ykx+b 则,解得, 直线 CD 解析式为 yx+4, E(8,0) ,F(4,6) , 若抛物线向下移 m 个单位,其解析式 yx2+x+4m, 联立得x2+xm0, 2m0, 0m, 向下最多可平移个单位, 若抛物线向上移 m 个单位,其解析式 yx2+x+4+m(m0) , 当 x8 时,y36+m, 当 x4 时,ym, 要使抛物线与 EF 有公共点,则36+m0 或 m6, 0m36, 综上,要使抛物线与 EF 有公共点,向上最多可平移 3

20、6 个单位,向下最多可平移个单位 故答案为:36, 三、 (本大题三、 (本大题 2 小题,每小题小题,每小题 8 分,满分分,满分 16 分)分) 15 (8 分)解不等式组: 【解答】解:解不等式 4(x1)x+2,得:x2, 解不等式x,得:x1, 则不等式组的解集为1x2 16 (8 分) 目前, 以 5G 为代表的战略性新兴产业蓬勃发展, 某市 2019 年底有 5G 用户 2 万户, 计划到 2021 年底 5G 用户数累计达到 9.68 万户,求这两年全市 5G 用户数的年平均增长率 【解答】解:设这两年全市 5G 用户数的年平均增长率为 x, 依题意得:2(1+x)29.68,

21、 解得:x11.2120%,x23.2(不合题意,舍去) 答:这两年全市 5G 用户数的年平均增长率为 120% 四、 (本大题四、 (本大题 2 小题,每小题小题,每小题 8 分,满分分,满分 16 分)分) 17 (8 分)如图,在平面直角坐标系中,已知点 A(1,0) 、B(3,4) 、和 C(2,4) 、D(6,6) ,请 按下列要画图并填空: (1)沿水平方向移动线段 AB,使点 A 和点 C 的横坐标相同,画出平移后所得的线段 A1B1,并写出点 B1的坐标; (2)将线段 A1B1绕着某一点旋转一定角度,使其与线段 CD 重合(点 A1与点 C 重合,点 B1与点 D 重 合)

22、,请用无刻度的直尺和圆规,找出旋转中心点 P (保留作图痕迹,不写作法) 【解答】解: (1)如图,线段 A1B1为所作,点 B1的坐标为(0,4) ; (2)如图,点 P 为所作 18 (8 分)阅读下面内容,并将问题解决过程补充完整: 1; ; 由此,我们可以解决下面问题:S1+,请求出 S 的整数部分 解:S1+ +1+2(1+)19; S1+ 18 S 的整数部分是 18 【解答】解:S1+ 1+2(1+)19, S1+18, S 的整数部分是 18, 故答案为:18,18 五、 (本大题五、 (本大题 2 小题,每小题小题,每小题 10 分,满分分,满分 20 分)分) 19 (10

23、 分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一 某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度如图所示,他们在地面一条水平步 道 MP 上架设测角仪,先在点 M 处测得观星台最高点 A 的仰角为 22,然后沿 MP 方向前进 16m 到达 点 N 处,测得点 A 的仰角为 45测角仪的高度为 1.6m 求观星台最高点 A 距离地面的高度(结果精确 到 0.1m参考数据:sin220.37,cos220.93,tan220.40,1.41) 【解答】解:过 A 作 ADPM 于 D,延长 BC 交 AD 于 E, 则四边形 BMNC,四边形 BM

24、DE 是矩形, BCMN16m,DECNBM1.6m, AEC90,ACE45, ACE 是等腰直角三角形, CEAE, 设 AECEx, BE16+x, ABE22, tan220.40, 解得:x10.7(m) , AD10.7+1.612.3(m) , 答:观星台最高点 A 距离地面的高度约为 12.3m 20 (10 分)如图,点 B 为O 外一点,过点 B 作O 的切线,切点为 A,点 P 为 OB 上一点,连接 AP 并 延长交O 于点 C,连接 OC,若 OCOB (1)求证:BPAB; (2)若 OB10,O 的半径为 8,求 AP 的长 【解答】 (1)证明:AB 是O 的切

25、线, OAAB, BAP+OAC90, OCOB, OPC+OCA90, OAOC, OACOCA, BPAOPC, BAPBPA, BPAB; (2)解:作 BDAP 于点 D, O 的半径为 8, COOA8, 在 RtOAB 中,AB6, BPBA6, OPOBBP4, 在 RtCPO 中,OP4,CO8, CP4, BABP,BDAP, ADPD,BDP90COP, BPDCPO, BPDCPO, ,即, 解得,PD, AP 六、 (本大题满分六、 (本大题满分 12 分)分) 21 (12 分)某学校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理, 并分别

26、绘制成扇形统计图和频数分布直方图部分信息如下: (1)本次比赛参赛选手共有 50 人 ,扇形统计图中“79.589.5“这一范围的人数占总参赛人数的百 分比为 36% ; (2)补全图 2 频数分布直方图; (3)成绩前四名是 2 名男生和 2 名女生,若从他们中任选 2 人作为该校文艺晚会的主持人,请用列举法 (画树状图或列表)求所选取的这两名学生恰好是一男一女的概率 【解答】解: (1)本次比赛参赛选手共有: (8+4)24%50(人) , “59.569.5”这一范围的人数占总参赛人数的百分比为100%10%, 79.589.5”这一范围的人数占总参赛人数的百分比为 100%24%10%

27、30%36%; 故答案为:50 人,36%; (2)“69.579.5”这一范围的人数为 5030%15(人) , “69.574.5”这一范围的人数为 1587(人) , “79.589.5”这一范围的人数为 5036%18(人) , “79.584.5”这一范围的人数为 18810(人) ; 补全图 2 频数直方图: (3)画树状图为: 共有 12 种等可能的结果数,其中恰好选中 1 男 1 女的结果数为 8, 所以恰好选中 1 男 1 女的概率 七、 (本大题满分七、 (本大题满分 12 分)分) 22 (12 分) 某商店经过市场调查, 整理出某种商品在第 x (1x90) 天的售价与

28、销量的相关信息如下表: 时间 x(天) 1x50 50 x90 售价(元/件) x+40 90 每天销量(件) 2002x 已知该商品的进价为每件 30 元,设销售该商品的每天利润为 y 元 (1)求出 y 与 x 的函数关系式; (2)问销售该商品第几天时,当天销售利润最大,最大利润是多少? 【解答】解: (1)当 1x50 时,y(2002x) (x+4030)2x2+180 x+2000, 当 50 x90 时, y(2002x) (9030)120 x+12000, 综上所述:y; (2)当 1x50 时,二次函数开口下,二次函数对称轴为 x45, 当 x45 时,y最大2452+18

29、045+20006050, 当 50 x90 时,y 随 x 的增大而减小, 当 x50 时,y最大6000, 综上所述,该商品第 45 天时,当天销售利润最大,最大利润是 6050 元; 八、 (本大题满分八、 (本大题满分 14 分)分) 23 (14 分)如图,在正方形 ABCD 中,E、F 分别是 AD、CD 上的点,且 AECF,连接 BE、BF、EF, 点 G 是 BE 的中点,连接 AG 并延长交 BF 于点 K (1)求证:AKBF; (2)当点 E 是 AD 的中点时,求 tanEBF 的值; (3)连接 CK,当线段 CK 取最小值时,求的值 【解答】 (1)证明:如图 1

30、 中, 四边形 ABCD 是正方形, BABC,BAECABC90, AECF, BAEBCF(SAS) , ABECBF, BGGE, AGGBGE, ABEABG, CBFBAG, CBF+ABF90, ABF+BAG90, AKB90, AKBF (2)解:AEED, ABAD2AE, ABEBAK, tanABEtanBAK, , 可以假设 BKm,则 AK2m, 设 AGBGx,则 GK2mx, BG2GK2+BK2, x2(2mx)2+m2, xm, GKm, tanEBF (3)解:如图 2 中,设 AB2a,取 AB 的中点 P,连接 PK,CP AKB90,APPB, PKABa, CBP90,PBa,BC2a, PCa, CKPCPK, CKaa, 当 P,K,C 共线时,CK 的值最小(如图 3 中) , CFBP, , CFaa, AECFaa,