ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:238.37KB ,
资源ID:179077      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-179077.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广东省广州市天河区2021年中考数学一模试卷(含答案解析))为本站会员(争先)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

广东省广州市天河区2021年中考数学一模试卷(含答案解析)

1、广东省广州市天河区广东省广州市天河区 2021 年年中考数学一模试卷中考数学一模试卷 一、选择题(共一、选择题(共 10 小题)小题). 12021 的相反数是( ) A2021 B2021 C D 2下面图形是用数学家名字命名的,其中是中心对称图形但不是轴对称图形的是( ) A 赵爽弦图 B 笛卡尔心形线 C 科克曲线 D 斐波那契螺旋线 3人民网北京 2021 年 1 月 7 日电,截至 1 月 3 日 6 时,我国首次火星探测任务天问一号火星探测器已经 在轨飞行约 163 天,飞行里程突破 4 亿公里,距离地球接近 1.3 亿公里,距离火星约 830 万公里数据 830 万公里用科学记数

2、法表示为( ) A8.3106公里 B8.3105公里 C8.3104公里 D0.83106公里 4已知O 与点 P 在同一平面内,如果O 的直径为 6,线段 OP 的长为 4,则下列说法正确的是( ) A点 P 在O 上 B点 P 在O 内 C点 P 在O 外 D无法判断点 P 与O 的位置关系 5下列运算正确的是( ) A(a+b)2a2+b2 B5aa5 C+ 1 D(2a2b)36a6b3 6若方程 x2cx+40 有两个不相等的实数根,则 c 的值不能是( ) Ac10 Bc5 Cc5 Dc4 7若分式的值为 0,则 x 的值为( ) A5 B5 C5 和 5 D无法确定 8已知 a

3、1,b+1,则 a2+b2的值为( ) A8 B1 C6 D4 9二次函数 yax2+bx+c 的图象如图所示,反比例函数 y与正比例函数 y(2a+c)x 在同一坐标系内 的大致图象是( ) A B C D 10尺规作图特有的魅力曾使无数人沉湎其中传说拿破仑通过下列尺规作图考他的大臣: 将半径为 r 的O 六等分,依次得到 A,B,C,D,E,F 六个分点; 分别以点 A,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; 连接 OG 问:OG 的长是多少? 大臣给出的正确答案应是( ) Ar B(1+)r C(1+)r Dr 二、填空题(本题有二、填空题(本题有 6 个小题,每小题个小

4、题,每小题 3 分,共分,共 18 分。)分。) 11分解因式:x2+3x 12样本数据 1,5,n,6,8 的众数是 1,则这组数的中位数是 13如图,在ABC 中,D,E 分别是边 AB,AC 的中点若ADE 的面积为,则四边形 DBCE 的面积 为 14已知圆锥的底面半径为 2cm,侧面积为 10cm2,则该圆锥的母线长为 cm 15在 RtABC 中,C90,sinB,若斜边上的高 CD2,则 AC 16如图,在矩形 ABCD 中,O 为 AC 中点,EF 过 O 点且 EFAC 分别交 DC 于 F,交 AB 于 E,点 G 是 AE 中点且AOG30,则下列结论正确的是 (1)DC

5、3OG; (2)OGBC; (3)OGE 是等边三角形; (4)SAOE 三、解答题(本大题有三、解答题(本大题有 9 小题,共小题,共 72 分,解答要求写出文字说明,证明过程或计算步骤分,解答要求写出文字说明,证明过程或计算步骤.) 17解方程组: 18已知:如图,ABED,点 F、点 C 在 AD 上,ABDE,AFDC求证:BCEF 19五一期间,甲、乙两人计划在附近的景点游玩,甲从 A、B 两个景点中任意选择一个游玩,乙从 A、B、 C 三个景点中任意选择一个游玩 (1)填空:乙恰好游玩 A 景点的概率为 ; (2)求甲、乙恰好游玩同一景点的概率 20创建文明城市,携手共建幸福美好某

6、地为美化环境,计划种植树木 4800 棵,由于志愿者的加入,实 际每天植树的棵数比原计划多 20%,结果提前 4 天完成任务求原计划每天植树的棵数 21如图,在 RtABC 中,BCA90,A30 (1)用尺规作 AB 的垂直平分线交 AC 于点 D,并作CBA 的平分线 BM; (不写作法,保留作图痕迹) (2)你认为(1)中的点 D 在射线 BM 上吗?请说明理由 22如图,直线 MN 与O 相切于点 M,MEEF 且 EFMN (1)求 cosE 的值; (2)若O 的半径为 2,求图中阴影部分的面积 23如图,四边形 ABCO 是平行四边形,OA2,AB6,点 A 在第一象限,点 C

7、在 x 轴的负半轴上,将 ABCO 绕点 A 逆时针旋转得到ADEF点 D 在反比例函数 y的图象上,且 AD 经过点 O,点 F 恰好 落在 x 轴的正半轴上(1)求点 A 的坐标; (2)求 k 的值 24已知抛物线 ymx22mx+3(m0)与 x 轴交于 A,B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C, 且 OB3OA (1)求抛物线的解析式; (2)若 M,N 是第一象限的抛物线上不同的两点,且BCN 的面积恒小于BCM 的面积,求点 M 的坐 标; (3)若 D 为抛物线的顶点,P 为第二象限的抛物线上的一点,连接 BP,DP,分别交 y 轴于 E,F,若 EFOC

8、,求点 P 的坐标 25如图,ABC 中,BAC120,ABAC,点 A 关于直线 BC 的对称点为点 D,连接 BD,CD (1)求证:四边形 ABDC 是菱形; (2)延长 CA 到 E,使得 ABBE求证:BC2ACCEAC2; (3)在(2)小题条件下,可知 E,B,D,C 四点在同一个圆上,设其半径为 a(定值),若 BCkAB, 问 k 取何值时,BECE 的值最大? 参考答案参考答案 一、选择题(本题有一、选择题(本题有 10 个小题,每小题个小题,每小题 3 分,满分分,满分 30 分,每小题给出的四个选项中,只有一个是正确的分,每小题给出的四个选项中,只有一个是正确的.) 1

9、2021 的相反数是( ) A2021 B2021 C D 解:2021 的相反数是:2021 故选:A 2下面图形是用数学家名字命名的,其中是中心对称图形但不是轴对称图形的是( ) A 赵爽弦图 B 笛卡尔心形线 C 科克曲线 D 斐波那契螺旋线 解:A、是中心对称图形,但不是轴对称图形,故本选项符合题意; B、是轴对称图形,不是中心对称图形,故本选项不合题意; C、既是轴对称图形,也是中心对称图形,故本选项不合题意; D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意 故选:A 3人民网北京 2021 年 1 月 7 日电,截至 1 月 3 日 6 时,我国首次火星探测任务天问一号

10、火星探测器已经 在轨飞行约 163 天,飞行里程突破 4 亿公里,距离地球接近 1.3 亿公里,距离火星约 830 万公里数据 830 万公里用科学记数法表示为( ) A8.3106公里 B8.3105公里 C8.3104公里 D0.83106公里 解:830 万83000008.3106, 故选:A 4已知O 与点 P 在同一平面内,如果O 的直径为 6,线段 OP 的长为 4,则下列说法正确的是( ) A点 P 在O 上 B点 P 在O 内 C点 P 在O 外 D无法判断点 P 与O 的位置关系 解:O 的半径是 3,线段 OP 的长为 4, 即点 P 到圆心的距离大于圆的半径, 点 P

11、在O 外 故选:C 5下列运算正确的是( ) A(a+b)2a2+b2 B5aa5 C+ 1 D(2a2b)36a6b3 解:(A)原式a2+2ab+b2,故 A 错误 (B)原式4a,故 B 错误 (D)原式8a6b3,故 D 错误 故选:C 6若方程 x2cx+40 有两个不相等的实数根,则 c 的值不能是( ) Ac10 Bc5 Cc5 Dc4 解:方程 x2cx+40 有两个不相等的实数根, (c)24140,即 c216, 则 c4 或 c4, 故选:D 7若分式的值为 0,则 x 的值为( ) A5 B5 C5 和 5 D无法确定 解:由题意得,|x|50, 解得 x5, 当 x5

12、 时,x24x50,分式无意义; 当 x5 时,x24x5400,分式有意义; x 的值为5 故选:A 8已知 a1,b+1,则 a2+b2的值为( ) A8 B1 C6 D4 解:a1,b+1, a+b2,ab211, a2+b2(a+b)22ab826, 故选:C 9二次函数 yax2+bx+c 的图象如图所示,反比例函数 y与正比例函数 y(2a+c)x 在同一坐标系内 的大致图象是( ) A B C D 解:抛物线开口向下, a0, , ba0, 当 x1 时,y0, 当 x2 时,y0, 4a+2b+c0, 2a+c0, 反比例函数 y在二四象限,正比例函数 y(2a+c)x 的图象

13、经过原点,且在二四象限, 故选:B 10尺规作图特有的魅力曾使无数人沉湎其中传说拿破仑通过下列尺规作图考他的大臣: 将半径为 r 的O 六等分,依次得到 A,B,C,D,E,F 六个分点; 分别以点 A,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; 连接 OG 问:OG 的长是多少? 大臣给出的正确答案应是( ) Ar B(1+)r C(1+)r Dr 解:如图连接 CD,AC,DG,AG AD 是O 直径, ACD90, 在 RtACD 中,AD2r,DAC30, ACr, DGAGCA,ODOA, OGAD, GOA90, OGr, 故选:D 二、填空题(本题有二、填空题(本题有

14、 6 个小题,每小题个小题,每小题 3 分,共分,共 18 分。)分。) 11分解因式:x2+3x x(x+3) 解:x2+3xx(x+3) 12样本数据 1,5,n,6,8 的众数是 1,则这组数的中位数是 5 解:数据 1,5,n,6,8 的众数是 1, n1, 则这组数据为 1、1、5、6、8, 这组数据的中位数为 5, 故答案为:5 13如图,在ABC 中,D,E 分别是边 AB,AC 的中点若ADE 的面积为,则四边形 DBCE 的面积 为 解:D,E 分别是ABC 的边 AB,AC 的中点, DE 是ABC 的中位线, DEBC,DEBC, ADEABC, ()2()2, ADE

15、的面积为, ABC 的面积为 2, 四边形 DBCE 的面积2, 故答案为: 14已知圆锥的底面半径为 2cm,侧面积为 10cm2,则该圆锥的母线长为 5 cm 解:设圆锥的母线长为 Rcm, 圆锥的底面周长224, 则4R10, 解得,R5(cm) 故答案为:5 15在 RtABC 中,C90,sinB,若斜边上的高 CD2,则 AC 解:在 RtABC 中,C90, A+B90 CDAB, A+ACD90 ACDB sinB, sinACD sinBCD 设 ADa,则 AC3a CD2, 2 a AC 故答案为: 16如图,在矩形 ABCD 中,O 为 AC 中点,EF 过 O 点且

16、EFAC 分别交 DC 于 F,交 AB 于 E,点 G 是 AE 中点且AOG30,则下列结论正确的是 (1)(3)(4) (1)DC3OG; (2)OGBC; (3)OGE 是等边三角形; (4)SAOE 解:EFAC,点 G 是 AE 中点, OGAGGEAE, AOG30, OAGAOG30, GOE90AOG903060, OGE 是等边三角形,故(3)正确; 设 AE2a,则 OEOGa, 由勾股定理得,AOa, O 为 AC 中点, AC2AO2a, BCAC2aa, 在 RtABC 中,由勾股定理得,AB3a, 四边形 ABCD 是矩形, CDAB3a, DC3OG,故(1)正

17、确; OGa,BCa, OGBC,故(2)错误; SAOE aa a2,SABCD3aa3a2, SAOESABCD,故(4)正确; 综上所述,结论正确是(1)(3)(4) 故答案为:(1)(3)(4) 三、解答题(本大题有三、解答题(本大题有 9 小题,共小题,共 72 分,解答要求写出文字说明,证明过程或计算步骤分,解答要求写出文字说明,证明过程或计算步骤.) 17解方程组: 解:, +得:x3, 把 x3 代入得:y0, 所以方程组的解为: 18已知:如图,ABED,点 F、点 C 在 AD 上,ABDE,AFDC求证:BCEF 【解答】证明:ABED, AD, AFDC, AF+FCD

18、C+FC, 即 ACDF, 在ABCDEF 中, , ABCDEF(SAS), BCEF 19五一期间,甲、乙两人计划在附近的景点游玩,甲从 A、B 两个景点中任意选择一个游玩,乙从 A、B、 C 三个景点中任意选择一个游玩 (1)填空:乙恰好游玩 A 景点的概率为 ; (2)求甲、乙恰好游玩同一景点的概率 解:(1)乙恰好游玩 A 景点的概率为; 故答案为:; (2)画树状图为: 共有 6 个等可能的结果数,其中甲、乙恰好游玩同一景点的结果数为 2 个, 甲、乙恰好游玩同一景点的概率为 20创建文明城市,携手共建幸福美好某地为美化环境,计划种植树木 4800 棵,由于志愿者的加入,实 际每天

19、植树的棵数比原计划多 20%,结果提前 4 天完成任务求原计划每天植树的棵数 解:设原计划每天植树 x 棵,则实际每天植树(1+20%)x 棵, 依题意,得:4, 解得:x200, 经检验x200 是原方程的解, 答:原计划每天植树 200 棵 21如图,在 RtABC 中,BCA90,A30 (1)用尺规作 AB 的垂直平分线交 AC 于点 D,并作CBA 的平分线 BM; (不写作法,保留作图痕迹) (2)你认为(1)中的点 D 在射线 BM 上吗?请说明理由 解:(1)如图,点 D,射线 BM 即为所求作 (2)点 D 在射线 BM 理由:设 BM 交 AC 于 D, C90,A30,

20、ABC60, BM 平分ABC, ABCCBM30, DABDBA, DADB, 点 D在线段 AB 上, AB 的垂直平分线交 AC 于点 D, 点 D 与点 D重合, 点 D 在射线 BM 上 22如图,直线 MN 与O 相切于点 M,MEEF 且 EFMN (1)求 cosE 的值; (2)若O 的半径为 2,求图中阴影部分的面积 解:(1)连接 MO,延长 MO 交 EF 于 H,如图, 直线 MN 与O 相切于点 M, MHMN, EFMN, MHEF, EHHF,即 MH 垂直平分 EF, MEMF, EMEF, EMEFMF, MEF 为等边三角形, MEF60, cosMEFc

21、os60; (2)MEF 为等边三角形, F60, MOE2F120, EOH60, OMOE2, OH1,EH, 图中阴影部分的面积S扇形MOESMOE 2 23如图,四边形 ABCO 是平行四边形,OA2,AB6,点 A 在第一象限,点 C 在 x 轴的负半轴上,将 ABCO 绕点 A 逆时针旋转得到ADEF点 D 在反比例函数 y的图象上,且 AD 经过点 O,点 F 恰好 落在 x 轴的正半轴上(1)求点 A 的坐标; (2)求 k 的值 解:(1)如图所示:过点 D 作 DMx 轴于点 M, 由题意可得:BAOOAF,AOAF,ABOC, 则BAOAOFAFOOAF, 故AOF60D

22、OM, AOF 是等边三角形, OA2, A(1,); (2)OA2,AB6, ODADOAABOA624, MO2,MD2, D(2,2), k2(2)4 24已知抛物线 ymx22mx+3(m0)与 x 轴交于 A,B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C, 且 OB3OA (1)求抛物线的解析式; (2)若 M,N 是第一象限的抛物线上不同的两点,且BCN 的面积恒小于BCM 的面积,求点 M 的坐 标; (3)若 D 为抛物线的顶点,P 为第二象限的抛物线上的一点,连接 BP,DP,分别交 y 轴于 E,F,若 EFOC,求点 P 的坐标 解:(1)抛物线 ymx22

23、mx+3(m0)的对称轴 x1,OB3OA, OB1,OA3, B(3,0),A(1,0), 把 A(1,0)代入抛物线 ymx22mx+3(m0),可得 m1, 抛物线的解析式为 yx2+2x+3 (2)如图 1 中,当BCM 的面积最大时,满足条件,连接 OM设 M(m,m2+2m+3) 则 SBCMSOCM+SOBMSOBC 3m+3(m2+2m+3) m2+m(m) 2+ , 0, 当 m时,BCM 的面积最大,此时 M(,) (3)如图 2 中,设 P(t,t2+2t+3) B(3,0),D(1,4), 直线 PB 的解析式为 y(t+1)x+3t+3, E(0,3t+3), 直线

24、PD 的解析式为 y(1t)x+3+t, F(0,3+t), EFOC1, 3+t3t31, t, P(,) 25如图,ABC 中,BAC120,ABAC,点 A 关于直线 BC 的对称点为点 D,连接 BD,CD (1)求证:四边形 ABDC 是菱形; (2)延长 CA 到 E,使得 ABBE求证:BC2ACCEAC2; (3)在(2)小题条件下,可知 E,B,D,C 四点在同一个圆上,设其半径为 a(定值),若 BCkAB, 问 k 取何值时,BECE 的值最大? 【解答】(1)证明:如图 1,连接 AD,交 BC 于 O, A,D 关于直线 BC 对称, ADBC,OAOD, ABAC,

25、 OBOC, 四边形 ABDC 是菱形; (2)证明:解法一:如图 2,延长 AE 到 F,使 EFBE,连接 BF, ABBE, ABBDCDACBEEF, BE+CEEF+CECF, ABAC, ABCACB, 同理得EBFF,BAEBEA, BAEABC+ACB,BEAEBF+F, ABCACBEBFF, ABCBFC, , BC2ACCFAC(CE+EF)AC(CE+AC), 即 BC2ACCEAC2; 解法二:如图 3,过点 B 作 BPCE 于 P, ABBE, APEP,且 ABACBE, RtBPC 中,BC2BP2+CP2, 在 RtBPA 中,BA2BP2+AP2, BC2

26、AC2BC2AB2(BP2+CP2)(BP2+AP2)CP2AP2, CP2AP2(CP+AP)(CPAP)(CP+EP)ACCEAC, BC2AC2CEAC,即 BC2ACCEAC2; (3)解:如图 4,连接 AD 交 BC 于 M,作 CD 的垂直平分线交 DA 的延长线于 G,连接 CG, 由题意得:CGDGa, 设 DMx,则 GMax, BAC120, 当BAC120时,如图 5,ABD 和ADC 是等边三角形, ABADAC, 当点 A 为圆心,即点 A 与 G 重合,此时 xCDcos60a, 0 x, 四边形 ABCD 是菱形, BCAD,BC2CM, 由勾股定理得:CM2a2(ax)2x2+2ax, CD2x2x2+2ax2ax, BC24CM24x2+8ax,BE2CD22ax, 由 BC2ACCEAC2,得 BECEBC2AC2BC2BE24x2+8ax2ax4x2+6ax4(x a) 2+ a2, 0 x, 当 xa 时,BECE 有最大值,此时 BC23a2,AB2BE2a2, 故 BC23AB2,所以 BC AB, 故 k时,BECE 的值最大